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Computer Fundamentals

Key Unit Competency
By the end of the unit, you should be able to explain characteristics and evolution of 
computers and appreciate impact of computers in the society.

Unit Outline
•	 Definition of computer science.
•	 Characteristics of computer.
•	 Classification of computer.
• 	 Role of computers in society.
• 	 History of computers.

Introduction
In the current generation, use of computers has become a common practice in 
classrooms, business, offices, entertainment, health, broadcasting, and many 
other areas. In this section, we discuss fundamental concepts, and characteristics, 
applications and  evolution of computers.

1.1  Definition of a computer and computer science
To adapt to the ever changing technologies, there is need to understand  fundamental 
concepts, and characteristics of computers.

Activity 1.1: Definition and parts of a computer
1.	 In groups of three, use search engines such as Google, or Bing to search for 

standard definitions of the following terms:
•	 Computer
•	 Computer Science

2.	 Fig. 1.1 below shows a typical type of a computer. Define and name the parts 
labelled (a) to (d). 

Fig. 1.1: Parts of a computer

b a

d c

Unit 1 COMPUTER FUNDAMENTALS
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Computer Fundamentals
1.1.1  Definitions
Computer: A computer is an electronic device capable of receiving raw facts (data) 
and performing a sequence of operations on the data based on special computer 
instructions (processing) to produce desired output (information). Fig. 1.2 below 
illustrates this process.

Data InformationProcess
Input Output

Fig. 1.2: Data processing in a computer
Computer Science: Computer science is a branch of science that deals with theory 
of computation, or design and operation of computer hardware and software, and of 
the application of computers in all sectors. 

Activity 1.2: Computer science
1.	 Do some research on the internet and write an essay on areas of study within 

Computer Science. These may include artificial intelligence, information systems, 
networks, security, database systems, human computer interaction, vision 
and graphics, numerical analysis, programming, software engineering, health 
informatics, bioinformatics and computational theories. 

2.	 Identify other fields of study that are related to Computers Science offered in 
most colleges and universities in Rwanda.

1.2  Characteristics of computers  
Though humans are more intelligent than computers, much of the activities from 
business to space exploration are now carried out with the support of computers. 
Does this imply computers are better than human beings?   

Activity 1.3: Characteristics of a computer
Individually, do some research and write an essay describing why computers 
though not as intelligent as human beings, have characteristics that have made them 
preferred tools in the workplace. Some of the characteristics that should appear in the 
essay include: reliability, speed, accuracy, diligence, versatility, memory, feelings, 
intellectual ability.

Upon completion of the essay, you should be able to appreciate that although 
computers do not have feelings and intelligence like human beings, they are:
1.	 Fast: A computer can perform in a few seconds the amount of work a human 

being can do in days, months or years.
2.	 Accurate: A computer is far much more accurate than human beings during 

data processing. The accuracy of the output obtained from a computer mainly 
depends on input provided. If the input is wrong, the computer processes wrong 
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Computer Fundamentals
output hence the term Garbage In Garbage Out (GIGO). GIGO is a phrase used 
in computer science that implies that if invalid or erroneous data is entered into a 
computer (garbage in), the computer will process and output invalid or erroneous 
results (garbage out). 

3.	 Versatile: Computers are versatile i.e. flexible in that they can be used to carry out 
different types of activities. For example, at one point using a word processor a 
computer can be programmed to process words like a typewriter and while using 
a spreadsheet to perform calculations like a calculator.

4.	 Reliable: Computers are more reliable because they do not get tired or bored in 
processing repeated work.

5.	 Power of remembering: Computers can store and recall high amount of information 
depending with the size of secondary storage media.

6.	 Diligent: Computers do not suffer from human related traits such as tiredness, 
and loss of concentration after working for long hours.

1.3  Classification of computers

Activity 1.4: Classification of computer
1.	 In groups of three, use internet, magazines or other reference books to classify 

computers according to:
•	 Physical size and processing power.
•	 Functions they perform.
•	 Type of data they process.

2.	 Other than the above types of classifications, brainstorm on other factors that can 
be used to classify computers.

Generally, computers can be classified using different criteria but the  most common 
classifications are based on size, processing power, function, and type data processing.

1.3.1  Types of computers according to size and power
When classified by physical size and processing power, computers can either be 
supercomputers, mainframe computers, minicomputers or microcomputers.

1.3.1.1  Supercomputers
Supercomputers are the fastest, largest, most expensive and powerful computers 
available. They are able to perform many complex operations in a fraction of a 
second. Supercomputers are mainly used for scientific research, which requires 
enormous calculations. Some of the applications that justify use of supercomputers 
include aerodynamic design and simulation, petroleum research, defence and weapon 
analysis and telecommunications. Because of its weight, a supercomputer is kept in 
a special room as shown in Fig. 1.3.

3



Computer Fundamentals

Fig. 1.3: Supercomputer

Activity 1.5: Uses of supercomputers
By doing research, explain how supercomputers are used by National Aeronautics 
and Space Administration (NASA) for aeronautics and aerospace exploration.

1.3.1.2  Mainframe computers
Mainframe computers such as shown in Fig 1.4 are less powerful and cheaper 
than supercomputers. While supercomputers may be described as giant computers, 
mainframes are said to be big in size. They are used for processing data and performing 
complex mathematical calculations. They have a large storage capacity and can 
support a variety of peripherals. Mainframe computers are used as powerful data 
processors in large research institutions and organisations such as banks, hospitals 
and airports, which have large information processing needs.

(a) Old mainframe

User operating a  
mainframe

User sitted on 
mainframe terminal

(b) Modern mainframe
Fig. 1.4: Mainframe computer

Activity 1.6: Mainframe computers
In groups, discuss and write a brief report on how mainframe computers are used in 
large organizations such as banks, hospitals, and airlines.

4



Computer Fundamentals
1.3.1.3  Minicomputers  
Minicomputers shown in Fig. 1.5 are also known as small-scale mainframes 
because they were cheaper alternative to mainframes computers. Like mainframes, 
minicomputers are used in business organisations, laboratories, research institutions, 
engineering firms and banks.

Fig. 1.5: Minicomputer

Activity 1.7: Distinction between mainframe and minicomputers
In groups, use reliable sources on the internet draw clear  distinctions between 
mainframe and minicomputers.

1.3.1.4  Microcomputers
A microcomputer is the smallest, cheapest and relatively least powerful type of 
computer. It is called a microcomputer because its CPU is called a microprocessor, which 
is very small compared to that of minicomputers, mainframes and supercomputers. 
Microcomputers are commonly used in schools, business enterprises, cybercafé, 
homes and many other places. Today, the processing power of microcomputers has 
increased tremendously close that of minicomputers and mainframes. 

Types of Microcomputers
Microcomputers may be classified into desktop and portable computers. A desktop 
such as shown in Fig. 1.6 are common types of microcomputer designed to fit 
conveniently on top of a typical office desk, hence the term desktop.

Fig. 1.6: Desktop computer
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Computer Fundamentals
Portable computers are microcomputers small enough to be held by hand (hand-
held) or placed on the laps while working (laptop). Examples of Portable computers 
include laptops (notebook), tablets,  and smartphones. Fig. 1.7 shows illustrations 
of notebook PC and a tablet.

Notebook PC Tablet
Fig. 1.7: Microcomputers

Activity 1.8: Types and uses of microcomputers
1.	 In the school environment, at home or in business organization, identify the 

following types of microcomputers:
•	 Desktop computers		  • Notebooks/Laptop
•	 Tablets				   • Palmtops

2.	 In discussion groups, research from reliable internet sites how the term 
microcomputer came into being. 

3.	 Using the illustrations given below, identify each type of microcomputer.

(a)                                                      (b)
Fig. 1.8: Microcomputers

1.3.2  Types of computers according to functions
Regardless of the size and processing power, a computer can be classified according 
to functions they perform. In this case, we have servers, workstations and embedded 
computers. Servers and workstations are general purpose computers used to provide 
access to resources on a network while special purpose computers are dedicated to 
a single task. 
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Computer Fundamentals

1.3.2.1  Servers
A server is a dedicated computer that provides hardware or software resources to 
other computers on a local area network (LAN) or a over the Internet.  Unlike desktop 
computers that  have standard input and output devices attached, most servers such 
as shown in Fig. 1.9 do not require such peripheral devices because they are accessed 
remotely using remote access software. Because servers are expensive, a powerful 
desktop computer may be converted into a server by adding the appropriate hardware 
and software resources. 

Fig. 1.9: Servers

Generally, servers may be classified according to the task they perform. For example, 
a file server provides massive storage devices dedicated to storing files while a print 
server is used to access to more printers, and a network server is a computer that 
manages network traffic. 

1.3.2.2  Workstation 		
A workstation is a name given to a computer connected to a server or network 
intended to be used by one person at a time, they are commonly connected to a server. 
This means that all users who utilize a computer at their job or school are using a 
workstation. Commercially, workstations are used for business or professional use 
such as graphics design, desktop publishing and software development.

1.3.2.3  Embedded computers
Embedded computers are computing devices designed for a specific purpose. 
Generally, an embedded computer has an operating system that only runs a single 
application. Examples of embedded computing devices include dishwashers, ATM 
machines, MP3 players, routers, and point of sale POS terminals.

7



Computer Fundamentals

Activity 1.9: Classification of computers
1.	 In the school environment, classify the following computers into servers, 

workstations, or embedded computers:
•	 Computer used to control access to hardware and software resources in a 

networked environment.
•	 Computer used to access hardware and software resources in a networked 

environment.
•	 Computer used in smart cards such as those used on ATMs and automated parking. 

2.	 In your groups, discuss advantages and disadvantages of supercomputers over 
microcomputers.

1.3.3  Types of computers according to data type
Computers can be classified into digital computers, analog computers or hybrid 
computers depending on the type of data they process.  

1.3.3.1  Digital computers
Digital computers perform calculations and logical comparisons by representing data 
and instructions as binary digits. This means that digital computers must convert 
data such as text, numbers, images, video and sound into a series of zeros and ones 
as represented by the signal waveform in Fig. 1.10. The data signal is either at 0V 
or 5V. In this case +5 or -5V represent a 1. Most of the computers used today such 
as desktop computers, laptops and tablets are digital computers.

+5V

-5V

0V

Fig. 1.10: Digital signal

1.3.3.2  Analog computer 
These are computers that process data that is continuous (analog) in nature. An analog 
signal is one which has a value that varies smoothly from peak to minimum and vice-
versa. For example, the sound waves that your mouth produces when you speak are 
analogue - the waves vary in a smooth way as shown in Fig 1.11. In the early days 
of computer evolution, most of the computers were analog in nature. Today analog 
computers are specialised devices used in engineering and scientific applications 
unlike those used to measure speed, temperature and pressure data.

+5V

-5V

0V

Fig. 1.11: Analog signal

8



Computer Fundamentals

Activity 1.10: Classification of computers
1.	 Research for details from the internet, magazines or other reference books and 

define the following types of computers:
•	 Analog computers
•	 Digital computers.
•	 Hybrid computers.

2.	 Discuss advantages and disadvantages of the three types of computers.

Assessment Exercise 1.1
1.	 Explain some of the characteristics that make a computer suitable for processing 

repetitive tasks.
2.	 Differentiate between the following terms:

(a)	Mainframe and minicomputers.
(b)	Analog and digital data. 
(c)	Servers and workstations.

3.	 Draw a sketch of a desktop computer and label the main physical parts.

1.4  Role of computers in society
Computers play very important roles in various socio-economic sectors such as 
economics, offices, financial institutions, industries, health, communication, security, 
education, entertainment and libraries. In this section, we discuss common application 
areas of computers in our society. 

1.4.1  Economics
Computers enables governments, businesses and individuals to plan, budget and tract 
their revenues and expenditures. Increased computing power means that it has become 
possible to perform economic analysis both at macro and micro-economic level.

1.4.2  Retail stores
Most retail stores use computers to help in the management of daily activities like 
stock control. The stock control system keeps account of what is in stock, what is 
sold and what is out of stock. The management is automatically alerted whenever a 
particular item or items are running out of stock that need reordering.

1.4.3  Offices
Computers have increased efficiency in offices by reducing the time and effort needed 
to access and receive information. Most modern office functions have been automated 
for efficient service delivery.
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Computer Fundamentals
1.4.4  Financial institutions
In the banking sector, computers and mobile devices such as cellphones can be used 
to withdraw or get any service from different branches. Special cash dispensing 
machines called automated teller machines (ATM’s) have enabled automation of 
cash deposits and withdrawal services. Efficiency has also been increased due to 
better record keeping and document processing brought about by use of computers.

1.4.5  Industries
Computers are being used to monitor and control industrial processes.
The computer age has seen wide use of remote controlled devices called robots. A 
robot is a machine that works like a human being but performs tasks that are too 
unpleasant, dangerous, or complex and tedious to assign to human beings.

1.4.6  Health
Computers are used to keep patients’ records in order to provide easy access to a 
patient’s treatment and diagnosis history. Computerised medical devices are now being 
used to get a cross sectional view of the patient’s body that enables physicians to get 
proper diagnosis of the affected body parts with high levels of accuracy. Computers 
also control life support machines in Intensive Care Units (ICU).

1.4.7  Communication
Integration of computers and telecommunication facilities has made message 
transmission and reception to be very fast and efficient. Because of the speed with 
which information can be transmitted around the world using computers, the world 
is said to have become a global village.

1.4.8  Security 
Information stored in computers such as fingerprints, images and other identification 
details help law enforcers carry out criminal investigations.

1.4.9  Education
Computers are used in teaching and learning in schools, colleges and universities. 
Learning and teaching using computers is referred to as Computer Aided Learning 
(CAL) and Computer Aided Instruction (CAI). For example, experiments in subjects 
like Chemistry or Physics may be demonstrated using a special computer program 
that can depict them on the screen through a process called simulation. To take care 
of learners with special needs, computers with software and assistive technologies 
such as microphone, braile keyboards and text magnifiers have been developed.

1.4.10  Entertainment
Computers can be used at home for recreational activities such as watching movies, 
playing music and computer games. They can also be used in storing personal 
information, calculating, keeping home budgets and research.

10
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1.4.11  Library management
In a modern library, computers enable library personnel to easily access and keep 
updated records of books and other library materials. Library users can also use 
computers to search for titles instead of using the manual card catalogue.

Activity 1.11: Role of Computers in society
1.	 Match the following computer application areas numbered 1 - 8 with the role 

played in column numbered A - H.
1.	 Supermarket 		  A – Forensic investigations
2.	 Hospital 		  B – Entertainment
3.	 Bank			   C – Stock control
4.	 Hotel			   D – Booking rooms
5.	 Home			   E – Analysing academic data
6.	 School			   F – Motor vehicle assembly
7.	 Industry 		  G – Remote monitoring of patients	
8.	 Police station 		  H – Processing cash transactions

2.	 Apart from using computers and other ICT devices such as mobile phones as 
productivity tools at home and workplace, they can be used to address various 
social, environental and cultural issues. Brainstorm on  how computers can be 
used in Rwanda to promote:
•	 Peace and reconciliation.
•	 Ndi Umunyarwanda philosophy.
•	 Environmental management.
•	 Sexuality and moral values.

3.	 By visiting around and outside the school, discuss both positive and negative 
impact of computers in the following sectors:
•	 Education			   •	 Business
•	 Health				    •	 Entertainment
•	 Communication		  •	 Security control
•	 Financial management	 •	 Government

1.5  History of computers
The computer, as we know it today, had its beginning with a 19th century English 
mathematics professor name Charles Babbage. Babbage designed the Analytical 
Engine and that is considered as the basic architecture of modern electronic computers 
are based on. It is not until 1937 when John Atanasoff and Clifford Berry built the 
first electronic digital computer called Atanasoff-Berry Computer (ABC).  Since then, 
there have been major computer evolutions classified into five generations.

11



Computer Fundamentals
1.5.1  First generation (1940-1956): Vacuum tubes
The first generation computers used electronic components known as vacuum tubes 
or thermionic values (Fig. 1.12) for circuitry and magnetic drums for memory. 
These types of computers were enormous, expensive, consumed a lot of power, and 
emitted a lot of heat which was often the cause of malfunctions. Input was based 
on punched cards and paper tape, and output was displayed on printouts. The three 
popular examples of first generation computers are Electronic Numeric Integrator and 
Calculator (ENIAC), Electronic Discrete Variable Automatic Computer (EDVAC) 
and Universal Automatic Computer (UNIVAC).

 

Fig. 1.12: Thermionic valves

Activity 1.12: First generation computers
In groups explain why first generation computers were large in size, emitted a lot of heat, 
and consumed a lot of power.

1.5.2  Second generation (1956-1964): Transistors
The invention of transistors shown in Fig. 1.13 ushered in the second generation of 
computers that were made up of transistors that are superior vacuum tubes. However, 
these computers but did not see widespread use in computers until the late 1950s. 
Although transistors still generated a great deal of heat, they were faster and more 
reliable than those made of vacuum tubes. In terms of input, computers in second 
generation relied on punched cards while storage was on magnetic cores. Examples of 
second generation computers include IBM’s 1401 and 7070, UNIVAC 1107, ATLAS 
LEO Mark III and Honeywell H200. 

Fig. 1.13: Tramsistors
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Activity 1.13: Second generation computers
Identify examples of second generation computers. By researching from Internet 
or other reliable reference, identify at least three examples of second generation 
computers.

1.5.3  Third generation (1964-1970): Integrated circuits
Development of electrical components known as integrated circuit (IC) was the 
hallmark of the third generation of computers. Fig. 1.14 shows illustration of ICs that 
are made up of transistors embedded on silicon chips called semiconductors. Most 
third generation computers allowed users to interact a computer through keyboards 
and monitors. For the first time, computers became accessible to a mass audience 
because they were smaller and cheaper than their predecessors. Examples of third 
generation computers include smaller and less expensive minicomputers such as 
IBM 360 and ICL 19000 series.

Fig. 1.14: Intergrated circuits (ICs)

Activity 1.14: Third generation computers
Through research identify at least three examples of third generation computers.

1.5.4  Fourth generation (1970-Present): Microprocessors
Further technological improvements on ICs saw very large intergrated (VLI) circuits 
which have thousands of integrated circuits built onto a silicon chip as microprocessor 
shown in Fig. 1.15. It is in the fourth generation computers that programs with 
graphical user interface (GUIs), mouse, and hand-held devices were introduced. 
Some the early examples of fourth generation computers include IBM 370 and 4300, 
Honeywell DPS-88 and Burroughs 7700.

Fig. 1.15: Top and bottom view of microprocessor
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Computer Fundamentals
1.5.5  Fifth generation (Present and beyond): Artificial intelligence
Tremendous improvement on hardware and software has given rise to what is loosely 
considered as the fifth generation computers that are based on artificial intelligence. 
The term artificial intelligence refers to capability of a computer to mimic human 
behaviour. The goal of fifth generation computing is to develop devices that are 
capable of learning, and respond to natural language input (voice recognition). In 
future, research outcomes in the fields of artificial intelligence and nanotechnology 
are expected to radically change the face of modern computers.

Activity 1.15: Fifth generation computers
By researching from Internet or other reliable reference material, identify at least 
three examples of fifth generation computers

Table 1.1 gives a summary of some of the main technological specifications  and 
uses of computers from the first to fifth generation.

Generation Features Application

1st Generation 
computers
1940-1956

Built during the 1st world war 
using vacuum tubes

The 1st generation computers were used for very 
large mathematical and scientific computations. For 
example, ENIAC developed during 1st world war was 
used to make certain calculations for the construction 
of hydrogen bomb.

2nd Generation 
c o m p u t e r s 
1956-1964

Built using transistors. Had tape 
storage, printer and operating 
system and stored programs.

The 2nd generation computers such as PDP-1 and IBM 
1400 series were programmable computers that were 
used mainly for scientific,  and business applications.

3rd Generation 
computers
1964-1970

Built using integrated circuits 
and semiconductors (a type of 
material that had the properties 
of an insulator and a conductor). 

These computers such as PDP-8 and IBM 360 were 
the first computers to multitask. They had most of 
the applications used today such as word processor.

4th Generation 
computers
1970-present

Built using very large integrated 
circuits  characterized by 
microcomputers.

Due to low cost, 4th generation computers such as Altair 
8800 (first microcomputer) were affordable and could 
be used for most applications.  Financial applications 
such as VisiCalc and networks particularly the internet 
became common.

5th Generation 
computers -§
p r e s e n t  a n d 
beyond

Today’s computers characterized 
by massive processing power 
and use of artificial intelligence.

Most modern computers are used for a large number 
of applications, in particular expert systems used in 
decision making.

Table 1.1 Technological specifications  and uses of computers

14



Computer Fundamentals

 Activity 1.16: Computer generations
1.	 Match the following generations of computers with the technology used to develop 

them.
	 1.	 First generation	 A – Very large scale integrated circuit
	 2.	 Second generation 	 B – Thermionic valves 
	 3.	 Third generation	 C – Transistors
	 4.	 Fourth generation	 D – Integrated circuits
2.	 The age of modern electronic computers can be traced back to 1940s. In groups, 

discuss five generations that characterize modern electronic computers.

Unit Test 1
1.	 What were the characteristics of first generation computers?
2.	 Draw a block diagram showing the evolution of computers in their generations 

and characteristics per each.
3.	 Define the term artificial intelligence.
4.	 Explain how integrated circuits contributed to the development of microcomputers.
5.	 Highlight some of the achievements of the fifth generation computers.

15
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Key Unit Competency
By the end of the unit, you should be able to:
•	 Identify computer components and their functions (input, output, processing and 

storage.
•	 Assemble, disassemble computers and perform basic  maintenance services.   

Unit Outline
•	 Computer system.
•	 Computer hardware.
•	 Audio port and connector.
•	 Internal computer components.
•	 Assembling computers.  
•	 Cleaning and disposing of computer components.

Introduction 
This unit introduces us to computer components and their functionality in order 
to have a common understanding of microcomputers regardless of their physical 
configuration. Later, the unit focuses on fundamentals of computer architecture that 
aims at equipping us with practical skills on how to assemble, disassemble, and repair 
desktop computers.   

2.1  Computer System
Though there are various definitions of computer systems, in our context we define a 
computer system as the combination of hardware, software (programs), user (liveware) 
and data that forms a complete, working system. 

2.1.1  User
A computer system is not complete without people referred to as users or liveware. 
Although some types of computers can operate without much intervention from users, 
most personal computers are designed specifically for use by people.

2.1.2  Hardware
In computer science context, hardware refers to physical components that make up 
a computer system. Common examples of hardware include system unit, keyboard, 
mouse monitor, printer, speakers, and modem.

COMPUTER ARCHITECTURE 
AND ASSEMBLYUnit 2
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2.1.3  Software
The term software refers to a set of instructions also known as program that directs a 
computer what to do. Some programs operates computer hardware and other programs 
while others enable a computer user to perform specific tasks such as accounting.

2.1.4  Data
Data consists of raw facts which the computer can manipulate and process into 
information that is useful to the user. In digital computers, data is converted from 
forms that people can understand such as text, numerals, sounds, and images into 
binary digit zeros and ones.
The four components that make up a computer system are illustrated in Fig. 2.1. Note 
that the software component is represented by shelved software casings and programs 
running in the computer, while data is illustrated by information on the screen and 
on a piece of paper on the desk. 

user

data

hardware software

Fig.2.1: The four components of a computer system

Activity 2.1: Computer Components

Using examples, explain the function of each of the four components of a computer 
system. Compare your answers with other members of your class and the below 
following discussion.
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2.2  Computer functions
Computers manipulate (process) data (input) to produce information (output) and 
hold (store) processed information for future use as shown in Fig. 2.2.

Data InformationProcess

Storage

Input Output

Fig.2.2:Input, processing, storage and output of a computer system

•	 Input: The first box on the illustration depicts how a computer receives input for 
processing. 

•	 Process: The computer then performs processing such as calculations and 
comparisons. 

•	 Output: The computer generates information that may be printed or displayed on 
a screen or in a specified format. 

•	 Storage: Data and information may be stored for future use on storage devices 
such as hard disk, CD/DVD etc.

2.3  Computer hardware
Generally the main hardware components of a typical desktop computer can be 
classified into two broad categories namely; peripheral devices as and the system unit.  

2.3.1  Peripheral Devices
Most desktop computers consist of external devices connected to a central housing 
known as the system unit. Collectively, external input devices such as keyboard and 
output devices such as the monitor are referred to as peripheral devices. Fig. 2.3 
shows common examples of peripheral devices. 

Activity 2.2: Peripheral Devices
Fig. 2.3 shows peripheral devices that may be attached to the system unit of a 
microcomputer. 
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Fig.2.3: Peripheral devices
Identify each item and classify it as input, output or storage devices using descriptions 
given below:
•	  Peripheral device that enables the user to enter data and instructions into the 

computer through typing. 
•	 To execute a command, the user moves the mouse which consequently moves 

the pointer on the screen.
•	 Television-like device that enables the user to display information such as text 

and videos from the computer.
•	 Peripheral device that looks like lever used to control a pointer on the screen 

mostly used for playing computer games.
•	 Devices used to display output from a computer onto a hardcopy such as plain papers.
•	 Peripheral device used to capture digital images and video and directly stores the 

content into computer storage. 
•	 Peripheral device used to produce audio sound such as music from a computer.
•	 Secondary storage media/device that can be plugged into USB port to read or 

store data.  
•	 Shiny round secondary storage media that is inserted into the system unit disk 

drive to read or store data. 

2.3.2  Computer case

The computer case, commonly referred to as the system unit, is the main 
hardware part in which internal components such as microprocessor, computer 
memory, and drives are housed. In terms of physical appearance (form factor), 
the two common types of systems units are tower type shown in Fig. 2.4(a) 
and desktop type in Fig. 2.4(b). The main difference is that, in tower system 
unit, the monitor rests on the table while in desktop types; the monitor may 
be placed on top of the system unit.
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		  (a) Tower type case		  (b) Desktop computer case
Fig.2.4: Types of system unit cases

Activity 2.3: System Unit
1.	 Discuss what the system unit of a computer is.
2.	 Identify the types of system units.
3.	 State the advantage and disadvantages of each of computer cases.

2.3.3  Ports and Connectors
A port is a physical or wireless interface between the computer and peripheral devices. 
Physically, you can identify ports such as shown in Fig. 2.5 through which devices 
may be connected using interface cables. In this section, we discuss ports such as 
serial, parallel, universal serial bus (USB), Ps/2, HDMI and VGA shown in Fig. 2.5 
(a) and (b).

Activity 2.4: Ports and Connector
1.	 Unplug peripheral devices connected to the back of the computer and compare 

the parts you see to those found on the picture below.
E

A

B C D

F

Fig.2.5(a) Back view of a desktop computer	 Fig.2.5(b) Back view of motherboard

Fig.2.5: Back view of microcomputer and motherboard
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2.	 Using Fig. 2.5, identify the ports labelled A-F and demonstrate how each port 
connect peripheral devices to the system unit. Compare your work with the  brief 
description given below:

2.3.3.1  Serial port
Serial ports also known as RS232 ports are used to connect devices that transmit 
and receive data as a series of binary digits (bits). Although RS232 ports and cable 
shown in Fig. 2.6 have become obsolete, they were used to connect devices such as 
the mouse, serial modems and printers. 

Fig.2.6: Serial connector and port

Activity 2.5: Serial Connector

Study the serial connector shown in Fig. 2.6 above and perform the following tasks:
•	 Identify whether the serial cable is used within the school or computer lab.
•	 If no serial cable is available in the school, count the number of pins shown on 

the illustration. 
•	 State the disadvantages of RS232C port and explain why it has become obsolete.

2.3.3.2  Parallel Port
A parallel port is an interface used to connect devices that transmit and receive 
multiple bits simultaneously (in parallel) hence it is faster than the serial interface. 
To connect devices such as printers and scanners to a parallel port, we use a 25-pin 
parallel cable also referred to as DB-25 shown in Fig. 2.7

Fig.2.7: Parallel connector and port



Computer Architecture  and Assembly

22

2.3.3.3  Universal Serial Bus 
Universal Serial Bus (USB) is an industry standard interface that defines cables, 
connectors and protocols for connections between computers and peripheral devices. 
Universal serial bus (USB) is a high-speed serial port that has become the standard 
interface hence replacing most serial and parallel ports. It is now common to find 
USB ports on most electronic devices such as tablets, radios, TVs, mobile phones, and 
set-top boxes. One of the reasons the USB interface has become popular is because 
as many as 127 devices can be daisy chained and connected to a single port using 
USB cable such as the one shown in Fig. 2.8. 

Fig.2.8: USB port and connector

Activity 2.6: USB Port and Connector
•	 Explain three reasons why USB interface has replaced parallel and other serial 

ports on most computers and  peripheral devices. 
•	 Move around the computer room and do the following:

1. Find out how many USB ports the  computers have.
2. Connect a mouse / keyboard / peripheral device to the computer’s system unit  
using a USB cable as directed by the teacher. Is the process simple or complicated? 

2.3.3.4  Personal System/2 ports 
Previously, most computers came with a pair of Personal Systems 2 (PS/2) ports also 
known as mini-DIN. However, most computer manufacturers have phased out PS/2 
ports in favour of USB interfaces and wireless connectivity. Fig. 2.9 shows a closer 
look of the PS/2 ports the one coded in pink to connect a keyboard while the green 
ports is used connects a mouse. 

Fig. 2.9: Keyboard and mouse Ps/2 ports
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Activity 2.7: PS/2 Port and Connector
Study PS/2 ports on the system unit or use Fig. 2.9(a) to explain the following:
•	 What colour codes are used to denote the mini-DIN ports for the keyboard and 

the mouse?
•	 Check behind your system unit and identify the mini-DIN ports if available. 

Sketch their appearance. 
•	 What happens if by mistake you connect the keyboard to the mouse port? 

2.3.3.5  Video graphics array port
A Video Graphics Array (VGA) port is a D-shaped interface used to connect display 
devices such as TVs, monitor or LCD projectors to the computer. Fig. 2.10 shows an 
illustration of a 15-pin VGA cable used to connect a monitor or projects to a computer.

Fig.2.10: VGA connector

Activity 2.8: VGA Port and Connector
Study the VGA connector shown in Fig. 2.10 or in a computer lab and perform the 
following tasks:
•	 Count the number of pins on the VGA cable connector. 
•	 Explain what happens when one of the pins on the VGA connectors happens to 

be damaged. 
•	 Connect a monitor to a VGA port. 

2.3.3.6  Audio Ports
Most computers and mobile devices come with audio interface used to connect 
speakers, microphones (mic) and other audio devices. Fig. 2.11(a) shows three audio 
ports while Fig. 2.11(b) shows output (speaker) and input (microphone) jacks coded 
in green and pink colours.
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                  Fig.2.11:(a) Audio port               Fig.2.11:(b) Speaker and microphone jacks
Fig.2.11: Audio interface

Activity 2.9: Audio Port and Connector
Study the connector (jack) shown in Fig. 2.11(b) and perform the following tasks:
•	 What colours are used to distiguish between the audio  and microphone ports. 
•	 Explain what happens if the two are interchanged by plugging in the audio 

connector to the mic port and vise versa.  
•	 In the computer lab, demonstrate how you would connect the speakers to audio 

and mic ports. 

2.3.3.7  Network  port
Network interface is a port that connects a device to physical or wireless transmission 
media in computer network. Most computers today come with a network interface 
known as RJ45 shown on Fig. 2.12 (b) to which a transmission media with RJ45 
connector shown in Fig. 2.12 (b) is plugged to establish a connection.   

 (a):RJ45 port                         (b):RJ45 UTP connector

Fig.2.12:RJ45 interface and UTP connector

Activity 2.10: Network Interface
Study the RJ 45 connector in Fig.2.12 above or in the computer lab and perform the 
following tasks:
•	 Distinguish between network interface adapter and onboard modem. 
•	 Apart from Communication Network Riser (CNR) adapter, describe three types 

of network interface adapters and slots. Which adapter technology is the most 
current. 
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•	 In the computer lab, demonstrate how you would connect computer to local area 
network using RJ 45 port and connector. 

2.3.3.8  Firewire connector 
Firewire port also referred to as IEEE 1394 is almost similar to USB but has higher 
data transmission rate. Therefore, firewire is suitable for streaming video from digital 
cameras to a computer. Fig. 2.13(a) shows an illustration of Firewire port while Fig. 
2.13(b) shows the two ends of a firewire cable connectors.

		     

					   
Firewire port

Firewire connector
(a): Firewire port (b):Firewire cable 	

Fig.2.13: Firewire port and connectors

2.3.3.9  High Definition Multimedia Interface
High Definition Multimedia Interface (HMDI) is an interface for transferring 
compressed and uncompressed digital audio or video data from HDMI-compliant 
device to a computer, projector, digital TV or audio device. HDMI is  intended to be 
a replacement for analog video standards such as the VGA. 

HDMI port

HDMI connector

	 (a) HDMI cable 	 (b) Ports on laptop
Fig.2.14: HDMI interface cable and port

Activity 2.11: HDMI Port and Connector
Study Fig. 2.14 or HDMI interface and carryout the following tasks:
•	 Identify the devices within the school or at home that comes with HDMI interface. 
•	 Draw similarities and difference between the USB and HDMI ports and 

connectors. 
•	 Through the help of the teacher in the computer lab, demonstrate how you would 
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stream video clips from a video camera to a computer or digital TV through HDMI 
interface. 

2.3.3.10  Small Computer Systems Interface
Small Computer Systems Interface (SCSI) is a set of parallel interface standards 
defined by ANSI for attaching peripheral devices such as printers, disk drives, tape 
drives and scanners. Although SCSI port shown in Fig. 2.15 is available on some 
devices, it has become obsolete in favour of USB, Firewire, HDMI and wireless 
standards. 

Fig.2.15: SCSI port and interface cable

Activity 2.12: Connecting Peripheral Devices
1.	 In groups of two or three, check whether your computer has an SCSI interface 

and perform the following tasks:
•	 Research on ANSI standardization body and trace the evolution of SCSI 

interface, number of devices supported,  and related viariations.  
•	 Identify devices within the school or at home that comes with HDMI interface. 
•	 Draw similarities and difference between the SCSI and parallel LPT1 ports 

and connectors. 
2.	 Adan intends to start computer bureau services such as printing and cyber cafe 

in Kigali. Assuming Adan has come to seek advice on specifications to consider 
before purchasing computers: 
•	 Use demonstration or illustration to help Adan differentiate between desktop 

and tower type system unit. 
•	 Take Adan through the ports at the back of the system unit explaining to him 

the purpose of each.
•	 Demonstrate and help Adan connect basic peripheral devices such as monitor, 

keyboard, mouse and printer to the right ports.
3.	 To easily identify each of the ports and connectors, device manufacturers use 

symbolic colour codes and impressions. For example, Table 2.1 a list of symbolic 
representations of some of the ports discussed in this section. Identify and explain 
what port or connector each symbol stands for.

SCSI port
SCSI connector
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Port/Connector Symbol Name of Port/Connector

Table 2.1: Port symbols

2.4  Internal Computer Components
We have already learnt about various peripheral devices and how they are connected to 
the system unit through ports. In this section, we discuss the main components found 
inside the system unit such as disk drives, motherboard, processor and memory. But, 
before we open the system unit cover, it is important that you observe the following 
safety precautions:
1.	 Always disconnect the computer from power source before starting to work on 

them.
2.	 Do not work on any peripheral device without the guidance of the tutor or 

laboratory technician. 
3.	 Never work in isolation because you may need help in case of any emergency.
4.	 Always discharge static electricity that might have built up on the body by touching 

an earthed metallic object or wearing antistatic wrist member.

 Activity 2.13: Internal Computer Components
1.	 Through the guidance of your teacher or lab technician, work in groups of two or 

three to open the system unit cover to expose the internal components as shown 
in Fig. 2.16. 
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Fig.2.16: Inside the system unit

2.	 Observe and identify various components inside the system unit.

2.4.1  Power supply unit and connectors
The Power Supply Unit (PSU) shown in Fig. 2.17 converts alternating current (AC) 
from mains to direct current (DC) required by internal computer components. The 
current supplied to the internal components like motherboard, hard disk, and optical 
drives depends on the rating from the device manufacturer. Note that unlike desktop 
computers that are fitted with PSU, portable computers like laptops come with power 
adapters that convert AC to DC.

Fig.2.17: Power supply unit.
Types of power supply unit connectors
The power supply unit connectors can be classified into external and internal connectors. 
The external connectors are used to connect the power supply unit to the power outlet 
while internal connectors are used to supply and distribute power to internal devices 
inside the computer found inside a computer case. In the power supply unit shown in 
Fig. 2.17 above shows an examples of internal and external power connectors.

Power connector 
from mains supply
Voltage changer 
(switch) between 
112v and 240v

On-off switch
Cooler fan

Power connector to 
internal components
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2.4.2  Motherboard
A motherboard shown in (Fig. 2.18) is the main printed circuit board onto which 
all components of the computer interconnect or are mounted and communicate with 
each other. 

Fig.2.18: Motherboard

The following are the main components that are attached or mounted on the 
motherboard. They are discussed later in the section: 
1. 	 Central Processing Unit (CPU): it is also called the microprocessor
2.	 Computer memory: They are various types of read only memory chips (ROMs) 

and random access memory modules (RAM).
3. 	 Disk drives: hard disk drive and the optical disk drive.
4.	 Adapter cards: they add functionality to the computer e.g. network 		

interface cards, TV/Radio cards, wireless network cards etc. 

2.4.3  Central processing unit (CPU) 
The Central Processing Unit (CPU), also known as the processor, is the most 
important component of the computer. It is actually regarded as the “brain” of the 
computer because all processing activities are carried out inside the processor. In 
microcomputers, the CPU is housed inside the system unit.
The CPU is mounted on a circuit board known as the motherboard or the system 
board.  For ease of upgrade, most motherboards have a socket into which the contact 
pins shown in Fig 2.19 (b) are aligned to and inserted.

Adaptor  card 
slot/controller Microprocessor

R A M 
Memory slots
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               (a): Topside of  microprocessor

						         (b): bottom connector socket

Fig.2.19: Top and bottom of a microprocessor

Activity 2.14: Central processing unit(CPU)

Using Fig. 2.21 (a) and (b), identify the type of microprocessor, and socket on the 
motherboard of your computer.

The CPU is made up of three distinct components within it:
1. The Arithmetic Logic Unit (ALU): performs all arithmetic and logical operations.
2. Control Unit: interprets instructions and controls speed of execution using a clock.
3. Registers: special memories within the CPU for holding instructions and data. 

Role of the CPU

The CPU consists of three functional elements namely the Control Unit (CU), 
Arithmetic and Logic Unit (ALU). Figure 2.20 illustrates the functional elements of 
the CPU.

Main  memory

2 
+  

3  
=  5

Data and instructions 
from memory

add 2 to 5

Control unitALU

Cache and registers

send result to 	
the memory 

ALU adds 
2 & 3  

Fig. 2.20:  Functional elements of the CPU
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The control unit

The control unit coordinates all processing activities in the CPU as well as input, 
storage and output operations. It determines which operation or instruction is to be 
executed next. To coordinate these activities, the control unit uses a system clock. 
When the clock ticks, a task is ashered into the CPU for processing. When it ticks 
again, the task is ashered in/out of the CPU. Different tasks require different number 
of clock ticks (time lengths) in order for them to be fully processed. 
The system clock sends electric signals as its means of communication to the CPU.  
The number of pulses per second determines the speed of a microprocessor. The faster 
the clock pulses, the faster the CPU, hence the faster the computer can process data.

Arithmetic and logic unit (ALU)

Activity 2.15: 

Group work: In groups of five, do the following:

1.	 Choose one of you to be the group leader. By consensus, select two lucky numbers 
for the group (any two numbers between 1 and 50). Assuming you select 9 and 
18. The group leader assigns each member at least one of the following tasks at 
the same time:

	 Task A:	 9 + 18	 =
	 Task B:	 18 – 9	 =
	 Task C:	 18 x 9	 =

	 Task D:	 18 ÷ 9	 =
2.	 Let each of you provide an answer to the group. Compare your answers.  What 

is the general name given to these operations?

The arithmetic and logic unit is the location within which all arithmetic and logical 
operations are carried out in the CPU. Basic arithmetic operations include; addition, 
subtraction, multiplication and division. 

Logic operations are based on the computer’s capacity to compare two or more 
values. For example, it may compare whether a piece of data is greater than or less 
than, equal to or not equal to etc.

In order for the ALU to be able to process data, it has special temporary storage 
locations called registers, which hold the data just before processing. Registers also 
hold the results after processing.
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Activity 2.16

Activity 2.17

2.4.4  Computer memory

(a) Main/primary memory

Imagine yourself walking in a forest. You keep on seeing different types of trees as 
you proceed along. Halfway through the forest, you meet a forest guard who shakes 
your hand and asks you what you are doing in the forest. In groups of three, discuss 
the following:
(i)	 When you reach the edge of the forest, are you likely to remember all the trees you 

saw in the forest? Why?
(ii)	Which tree are you likely to remember and why?

NB: Discuss this in reference to short term memory and long term memory in human 
beings. Present your views to the class.

Human beings have memory, both short term and long term, where they keep 
information. Daily unimportant information is usually kept in the short term memory 
then discarded after a while. Important information is usually stored in the long term 
memory. It can be remembered even after many years. Computer memory is modelled 
along the same lines.

In S1, you were introduced to computer memory.
In pairs, study the pictures in Figure 2.21. What do you think the acronym ROM 
stands for? What about RAM? 

(a)
(b)

Fig. 2.21: ROM and RAM chips

(a)	Which one is temporary memory? Which one is permanent?
(b)	Access the content provided by the teacher and research about the various types 

of ROM and RAM, their advantages and disadvantages. 
(c)	Make a presentation in class as requested by the teacher.

Main memory also known as primary storage is a type of storage that is directly 
accessible by the processor. Computer memory can be classified into Read Only 
Memory (ROM) and Random Access Memory (RAM). Figures 2.9 (a) and (b) show 
a ROM chip and RAM module respectively.
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Read Only Memory (ROM)
Read Only Memory is used to store programmed instructions and data permanently 
or semi-permanently. Data and instructions stored in ROM are those which remain 
unchanged for long periods of time e.g. POST instructions, special purpose 
computers, computerised fuel pumps instructions etc.
Depending on permanence of the instructions or data written on it, there are four 
Types of Read Only Memory namely:
(i)	 Mask Read Only Memory (MROM): Once the content is written on it by the 

manufacturer, it cannot be changed. Examples of computer that use MROM based 
operating systems are those that require long term sustainability e.g. computers 
that run network operating systems or server operating systems.

(ii)	Programmable Read Only Memory (PROM): This allows the user to alter it only 
once after the content is written on it. Examples are the PROM compact disc and 
PROM intergrated circuit chips.

(iii) Erasable Programmable Read Only Memory (EPROM): This has a transparent 
quartz window through which its contents, can be erased by exposing it to ultra 
violet (UV) light, and then reprogrammed for another use.

(iv)	Electrically Erasable Programmable Read Only Memory (EEPROM): This 
type of ROM can be erased and reprogrammed using electricity. An example of 
EEPROM is the memory that stores the basic input/output system (BIOS).

Characteristics of Read Only Memory (ROM) are:
1.	 One can only read its content but you cannot write on it unless it is a special type 

of ROM.
2.	 It is non-volatile i.e. its content is not lost when the computer is switched off.
3.	 Stores permanent or semipermanent instructions from the manufacturer called 

firmware. It can store semipermanent instructions because some variations of 
ROM chips can be programmed according to the user’s specification.

Random Access Memory (RAM)
Random access memory (RAM) also known as working storage is used to hold 
instructions and data needed by the currently running applications. The information 
in RAM is continually read, changed, and removed. It is referred to as random access 
because its content can be read directly regardless of the sequence in which it was stored. 
As opposed to ROM, the content in RAM is held temporarily and its content is lost 
once the computer is turned off. Therefore, before switching off the computer, it 
is important that one stores (saves) his/her work in a device that offers relatively 
permanent storage facility.
Characteristics of Random Access Memory (RAM) are:
1.	 Data can be read (retrieved) and written (stored) in it.
2.	 RAM is a temporary (volatile) storage because its content disappears when the 

computer is switched off.
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Activity 2.18

3.	 Its content is user defined i.e. the user dictates what is to be contained in the RAM.
The two main types of RAM are:

Static RAM
Static RAM (SRAM) is a fast type of memory mostly located inside a microprocessor. 
For this reason, SRAM is used on special purpose memories such as cache memory. 
Cache memory is used to enhance the processing speed by holding data and 
instructions that are instantly required by the processor.

Dynamic RAM
Dynamic RAM (DRAM) is a relatively slower type of RAM compared to SRAM. 
The term dynamic refers to the tendency for the stored charge to leak away, even with 
constant power supply. For this reason, DRAM requires periodic recharging (refresh) 
to maintain its data storage. Fig. 2.22 shows ROM and RAM on the motherboard.

RAM modules

ROM chip

Fig. 2.22: ROM and RAM on motherboard

Special purpose memories
Some minute types of memories are included inside a microprocessor or input/output 
devices, in order to enhance its performance. These memories include buffers, registers 
and cache memory as discussed earlier.
Cache memory

Group work: 
In groups of five, take the mobile phone that has been provided by the teacher. Scroll 
through the following:
1.	 The Contacts lists.
2.	 The Recently called list.
Why do you think you need to have a recently called list? Discuss the importance of 
this list and present the finding to the class. 
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Activity 2.20

Activity 2.19

Cache memory (pronounced as cash) is the fastest type of RAM. Its main aim is to 
store data that has been recently accessed by the processor. The belief is that the same 
data may most likely be required again soon. This would save the time of having 
to retrieve it from the slow secondary memory. This arrangement enhances overall 
computer performance by avoiding the slow secondary storage for recently used data. 
The only time data is retrieved from secondary storage is when no copy is in catche. 
There are three types of cache memory namely:
•  Level 1: also known as primary cache located inside the microprocessor;

•  Level 2: also known as external cache that may be inside the microprocessor or 
mounted on the motherboard, and

•  Level 3: is the latest type of cache that works with L2 cache to optimise system 
performance.

Buffers

Brainstorming: 
Study the picture of a dam provided by the teacher. Search for other pictures of dams 
on the internet. List down their names. 
As a class, brainstorm on the driving forces that motivate construction of dams along 
rivers?

Buffers are special memories that are found in input/output devices. Input data is 
held in the input buffer before being forwarded to the memory to avoid overloading 
the memory. The data can then be transferred to the memory at a reasonable pace to 
avoid flooding it.

Output buffers play a similar role when sending data to the network or output device. 
For example, printers have buffers where they can store massive documents sent by the 
CPU for printing hence freeing the CPU to perform other urgent tasks as the printer 
continues to print in the background. Buffers therefore play a controlling role between 
devices to avoid a quick device flooding a slow device with data or instructions. 

Registers

Pair Work: 
Most organisations have a waiting room where guests rest as they wait to see the 
company boss in turns.
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Activity 2.21

Discuss why such an arrangement is important. What is likely to occur if there is no 
such arrangement for a busy office. 

As opposed to buffers, registers hold one piece of data at a time and are inside the 
CPU. Just like the secretary in Activity 2.16 who hosts and clears the next one person 
just before he/she sees the boss, registers hold that one data item just before or after 
processing within the CPU. 

Examples of registers are:
Accumulator: This temporarily holds the results of the last processing step of the ALU.

Instruction register: This temporarily holds an instruction just before it is interpreted 
into a form that CPU can understand.

Address register: This temporarily holds the next piece of data waiting to be processed.

Storage register: This temporarily holds a piece of data that is on its way to and from 
the CPU and the main memory.

(b)  Secondary memory

Research on the internet about secondary/tertiary memory. Is it temporary or 
permanent? Which devices are referred to as secondary/tertiary storage devices? 
Why are some of these devices referred to as mass storage devices?

Secondary storage, also referred to as auxiliary storage, are devices that provide 
alternative long-term storage for programs, data and information. Because of their 
large capacity they also referred to as mass storage devices. They are regarded as 
secondary because unlike primary storage, they are not directly accessible by the CPU. 

Secondary storage devices can be classified according to:
(a)	Portability: removable and fixed
(b)	Technology used to store and retrieve data: magnetic, optical, magneto-optical 

and solid state.

In this section, we discuss these devices by indicating whether a device or media is 
removable and the technology used to store data on it.

i) Removable storage
Removable storage media are those that are not housed inside the computer. Data is 
read and written into the media using a device known as drive. Examples of removable 
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Activity 2.22

storage include optical disks (e.g. CD’s, VCD’s and DVD’s) and solid state devices 
(e.g. Flash disks). Others include the floppy diskettes, magnetic tapes and magnetic 
disks which have become virtually obsolete in the personal computing space.

•	 Optical storage media

Study the pictures in Figure 2.23. Have you seen them before in real life? 
(a)	State three areas where you have witnessed the disks being used.
(b)	Using a ruler, measure the diameter of each and note down. Investigate on the 

internet about the diameters of such disks. 
(c)	What advantages do you think they offer to the user?

Fig. 2.23:  Optical disks

Optical storage media are so called because data is written and read from them using 
a laser beam. A laser beam is a very strong concentrated light. Two reasons why 
optical storage media are used:
1.	 They store very large volumes of data.
2.	 Data stored in them is more stable and more permanent than the magnetic media.

•	 Compact disks (CD)

Compact disks hold large quantities of data and information. One disk can hold as 
much as 700MB. They are mostly used to store data and information that requires a 
lot of space such as video clips, software, sounds etc. Currently compact disks are 
available in three forms namely:
Compact disk-read only memory (CD-ROM): Compact disk read only memory (CD-
ROM) as the name suggests contain data that can only be read but cannot be written 
on. To record data the recording surface is made into pits and lands (bumps). When 
a laser beam fall on the land,this is interpreted as 1, otherwise a zero is recorded.
Compact disk-recordable (CD-R): Compact disk recordable (CD-R) are coated with 
special dye which changes colour to represent data when burned using a laser beam. 
Once data is burned on a CD-R, it becomes read only.
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Activity 2.23

NB: CD-ROMs and CD-Rs are referred to as Write Once Read Many (WORM.) Data 
is only recorded once but can be read as many times as possible.
Compact disk-rewritable (CD-RW): Unlike the CD-Rs, these types of compact disks 
allows the user to record, erase and rewrite new information just as one would with 
floppy disks.

•	 Digital versatile disks
Digital Versatile Disk (DVD), also known as digital video disk resembles a compact 
disks in every aspect. The only difference is that they have a higher storage capacity 
over 17 Gigabytes of data. Figures 2.23 (seen earlier) shows various examples of 
optical disks.

•	 Optical card
An optical card stores data and is read optically on a stripe rather than using magnetic 
ink. These types of cards are mostly used in banking and other business organisations 
to record customer details.
Figures 2.24 below shows examples of an MICR reader reading a cheque and an 
optical card in the optical card reader.

Fig. 2.24: Optical card readers  

•	 Solid state storage media

Study the pictures in Figure 2.25. What do you think they represent? Also compare 
them with the samples provided by the teacher. Where in real life have you used 
or seen people using these components? What are the names of these components?

	 (a)				    (b)				    (c)
Fig. 2.25: Solid state storage devices

Solid state storage is a non-volatile storage that makes use of integrated circuits 
rather than mechanical, magnetic or optical technology. They are referred to as solid 
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state because they do not have movable parts. Some examples of solid state devices 
are memory sticks (Figure 2.13 (b) and (c)) and flash disk drives (Figure 2.13(a)).

ii) Non-removable/fixed storage media
•	 The hard disk and its structure

Activity 2.24
Access the website provided by the teacher and read about the hard disk of a computer. 
(a)	Search for pictures of the hard disk on the internet in order to learn about its 

structure. 
(b)	How does it store data? What are tracks, sectors and platters? 
(c)	Make a brief presentation to the class concerning your findings.
The hard disk is a secondary storage device that stores data and programs installed in 
a computer for a long time (permanently) even after the computer has been switched 
off. The data includes any created documents and downloaded such as text, photos 
and music. When the computer requires to process data and instructions stored on 
the hard disk, it has to be fetched first and placed in primary memory (RAM). When 
the data and instructions are in RAM, they can be easily fetched into the cache then 
the registers as directed by the control unit of the CPU.
Traditionally, the hard disk is mounted inside the computer. For this reason we refer 
to it as a fixed disk. However, this is not always the case because some hard disks 
are removable. 
The hard disk is made up of metallic disk platters together with a read/write head, 
housed in a protective metal case (Figure 2.26(a)). 

Casing

Read/write 
head

Disk platters 
forming a 
cylinder

Spindle

Sector

Track

(a) Inside hard disk drive                                         (b) Disk platter logical structure
Fig. 2.26: Structure of Hard disk
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The one or more metallic platters, stacked on top of each other but not touching one 
another. The stack of platters is attached to a rotating pole called a spindle. If it has 
more than one platter, they are stacked on top of each other  to form a cylinder. A 
cylinder requires multiple read/write heads, one for each platter.
The read/write head floats just above the surface of the rapidly rotating disk to read or 
write data. On the surface of each disk are special read/write circular regions called 
tracks (Figure 2.26 (b)). Each track is divided into angular sections called sectors 
similar to the sector of a circle. 
Most computer hard disks are connected to the motherboard via channel called 
controllers. Some of these controllers are Integrated Drive electronic (IDE), enhanced 
IDE or AT attachment (ATA).

•	 Disk drives 

A disk drive is hardware device in or attached to a computer that reads the data stored 
on a disk and writes data onto the disk for storage. Drives are mounted in drive bays 
in the system unit chassis. Examples of disk drivers inside the systems unit include 
optical (CD/DVD) drives, hard disk drives and tape drives. Figure 2.27(a) shows an 
illustration of hard disk drive mounted in the system unit while Fig 2.27(b)  shows 
a CD/DVD drive on a Laptop. 

         
(a) Hard disk drive                                 (b) DVD/CD drive on a laptop

Fig.2.27: Examples of disk drives

2.4.5  Adapter card
Adapter card or add-on card is a circuit board used to increase functionality of a 
computer e.g. adding a TV receiver, and wireless network etc. Fig. 2.28 shows a 
wireless network card. It enables the computer to connect to a Wi-Fi hotspot.  

Fig.2.28: Wireless network card
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2.4.6  Elements attached to the motherboard
As mentioned earlier, some of the basic elements attached to the motherboard include 
CPU Socket, RAM slots, silicon chips, BIOS, expansion slots, CMOS battery, and 
controllers and electronic data buses.
•	 CPU Socket: The CPU or processor socket is the connector that houses the CPU 

to establish mechanical and electrical contact between the processor and the 
motherboard. Some sockets uses Pin Grid Array (PGA) that consists of holes 
where pins on the underside of the processor connects

•	 RAM slots: The RAM slots or sockets located near the processor are connectors 
that establish contact between memory modules and the motherboard. Depending 
on the type of motherboard, there may be 2-4 RAM slots (banks) that determine 
the amount of memory that can be installed.

•	 Chipset: Normally a chipset is an element that facilitates intercommunication 
between the microprocessor to the rest of the components on the motherboard. 

•	 Expansion slot: Alternatively referred to as bus slot or port is a connection on 
the motherboard to which an expansion card can be plugged in order to expand 
the capability of a computer.   

•	 CMOS battery: Complementary metal-oxide semiconductor (CMOS) is a small 
amount of memory on a computer motherboard used to store BIOS settings. To 
avoid losing the settings, CMOS is powered by a button-like cell referred to as 
CMOS battery.   

•	 Data buses: if you carefully observe the surface of a motherboard, you will see 
printed electronic pathways or lines between components. These pathways are 
referred to as data buses because they are used to transfer data and instructions 
between components inside the computer.

Assessment Exercise 2.1
1.	 Distinguish between the following:

(a)	AC and DC power supply.
(b)	Bluetooth and infrared connectivity.
(c)	Firewire and USB ports.
(d)	5-pin DIN and PS/2 ports.

2.	 Explain three types of serial ports available on a typical desktop computer.
3.	 State two advantages of USB port over the parallel port.
4.	 Explain how you would connect both data projector and monitor to a single computer.

2.5  Assembling desktop computers	
With the knowledge and skill in handling internal and external components of a 
desktop computer, it’s now time to roll-up your sleeves to assemble and  disassemble 
a computer.  However, before you proceed, remember to observe safety precautions in 
order to avoid health injuries or damages to delicate computer components. Let’s start 
by having a look at tools that you may need to assemble or dis-assemble a computer. 
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Activity 2.25: Assembling a computer
Looking at a toolkit in the computer lab or illustration shown in Fig. 2.29 identify 
the following tools:
1.	 Extended extractor: also called a part grabber are, used for retrieving dropped 

objects, such as jumpers or screws, from inside the computer.
2.	 Antistatic wrist member.
3.	 Torx screw drivers of varying sizes. 
4.	 Multimeters used to measure the resistance, voltage, and/or current within 

computer components.

1

4

2
3

Fig.2.29: Computer repair kit

2.5.1  Step 1: Mounting Hard disk drives 
Hard disk drives are usually mounted on the system unit case  and connected to the 
motherboard through either Enhanced Integrated Drive Electronics (EIDE), Small 
Computer System Interface (SCSI) or Serial Advanced Technology Attachment 
(SATA) cable interface. SATA is one of the latest technologies. It supports hot-
swapping i.e.  a drive can be detached or attached to the motherboard while the 
computer is ON. Fig. 2.30  illustrates how to mount a SATA hard disk drive. 

Fig. 2.30: Mounting a hard disk
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Activity 2.26: Mounting a Hard Disk 
In groups or individually, follow the guidelines below to mount a hard disk drive:
1.	 Determine whether the motherboard has an empty SATA controller socket. 
2.	 Slide the hard drive into the  available bay on the system unit casing and secure it 

firmly by screwing or using the restraining mechanism provided by the manufacturer.
3.	 Plug in the SATA interface cable to the drive and to motherboard SATA/IDE 

controller.
4.	 Connect the  power cable from the power supply unit to the back of the hard 

drive as shown in Fig. 2.30.

2.5.2  Step 2: Installing optical drives 
Optical drives such as CD and DVD drives are attached and detached from the sytem 
unit in the same way as hard disk drives. 

Activity 2.27: Installing optical drives 
In groups or individually, follow the guidelines below to mount an optical drive:
1.	 Determine whether the motherboard has an empty SATA or EIDE controller socket. 
2.	 Slide the optical drive into available bay on the system unit casing and secure 

it firmly by screwing or using the restraining mechanism provided by the 
manufacturer.

3.	 Plug in the SATA or EIDE interface cable to the back of the drive and motherboard 
controller.

4.	 Connect a power cable from the power supply unit to the back of the optical drive 
similar to procedure used to insert power at the back of hard disk drive.

2.5.3  Step 3: Mounting power supply unit
To replace a damaged Power Supply Unit proceed as follows:
1.	 Turn off the power and remove the power cable from the socket, and then unscrew 

the faulty power supply unit.
2.	 Unplug power cables connected from the power supply unit to internal drives 

and P1 on the motherboard, and then remove the faulty unit.
3.	 Insert a new power supply unit and fasten the screws that hold the power supply 

onto the chassis. Connect P1 from the power supply unit to the motherboard. 
5.	 Connect power supply cables from the unit to other internal components such as 

disk drives. 

2.5.4  Step 4: Mounting motherboard
There are several types of motherboards ranging from the outdated Advanced 
Technology (AT) and Advanced Technology Extended (ATX) to the current.  
Fig. 2.31 shows an illustration on how to mount a motherboard.
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motherboard

system casing unit

Fig.2.31: Mounting a motherboard

Activity 2.28: Mounting a motherboard
In groups of two or three, demonstrate how to mount a motherboard using the 
following guidelines:

•	 Line it up properly on the chassis, screw and fit it into place.
•	 Mount the processor, RAM modules and any expansion cards separately. 
•	 Plug in the power cable denoted with P1 connector from the power supply 

unit. 
•	 Connect other internal components onto the board,  and then connect the 

monitor, keyboard and mouse to the system unit.
•	 Test for power and ensure that internal and external components are initializing 

correctly during POST.

2.5.5  Step 5: Installing computer memory
Fig. 2.32 shows how to install a RAM module. Open the clips, align the module with 
the slot then press into position until the clips hold tight.

RAM module

Memory slot/bank

Fig.2.32: Installing RAM modules
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Activity 2.29: Installing a computer memory
Before you attach or detach a memory (RAM) module, you need to make some 
considerations. In class, discuss such considerations e.g. motherboard architecture, 
number of memory banks available, type and speed of the processor, and maximum 
memory capacity.
Through the guidance of the teacher, install a RAM module using the following 
guidelines:
1.	 Discharge any static charges before touching the module.
2.	 Place the module upright in the slot so that the notches on the module are lined 

up with the tabs on the memory slot.
3.	 Gently press down on the module. The retention clips on the side should be raised 

to the locked position. You might need to guide them into place with your fingers.

NB: Once mounted, the new memory module is automatically detected during bootup 
and its capacity calculated. However, if not properly inserted, the computer makes 
a continuous beeping sound.

2.5.6  Step 6: Replacing CMOS battery 
Computers have a Complementary Metal-Oxide Semiconductor (CMOS) battery that 
powers the BIOS chipset to ensure basic settings such as date and time are up-to-date. 

Activity 2.30: CMOS Battery Replacement
Study the motherboard and perform the following tasks:
1.	 Identify the CMOS cell battery mounted on the motherboard as shown in  

Fig. 2.33.

CMOS battery

Fig.2.33: Replacing CMOS battery
2.	 Through the guidance of the teacher, detach and re-attach  a CMOS battery using 

the following guidelines:
•	 Turn off the computer and remove the cover, ensuring that you carry out proper 

procedures.
•	 Locate the CMOS battery clipped on the motherboard.
•	 Detach the battery out of the retaining clip. The clip uses slight tension to hold 

the battery in place, so there is no need to remove the clip or bend it outward.
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•	 Install the new battery so that the bottom is in contact with the motherboard.
•	 Restart the computer and press the key or combination of keys to enter BIOS 

setup.
•	 To restore the settings, use the BIOS setup menu. Alternatively, use automatic 

configuration options. 

2.5.7  Step 7: Upgrading BIOS 
Basic Input Output System (BIOS) is a firmware that stores Power On-Self Test 
instructions that are required to boot-up a computer. BIOS can be upgraded to support 
new devices in the market. The old one is  flashed a new one installed  from a suitable 
BIO manufacturer such as Phoenix. 

Activity 2.31: BIOS upgrade
Follow the teachers guidance to update and upgrade BIOS ROM:
1.	 Identify the manufacturer of the BIOS chip.
2.	 Back up the CMOS Settings and restart the computer using a combination of 

CTRL + ALT + DELETE keys.
3.	 Enter the CMOS settings program using the specified key or combination of keys,  

and then write down the settings. 
4.	 Backup the old BIOS in case the upgrade results to system failure.
5.	 Insert the manufacturer’s BIOS utility disk. The disk contains a program that 

automatically flashes the BIOS. 
6.	 Restart the computer. If successfully done, the BIOS retains the new firmware.

2.5.8  Step 8: Mounting adapter card
There are several types of adapter cards. These include Industry Standard Architecture 
(ISA), Extended ISA (EISA),  Peripheral Component Interconnect (PCI), Accelerated 
Graphics Ports (AGP), Video Electronics Standards Association (VESA), Audio 
Modem Riser (AMR) and Communication Network Riser (CNR). 

Activity 2.32: Adapter Card
1.	 Using reliable internet sites or reference materials, discuss the architecture of 

each type of the adapter cards highlighted above.
2.	 Study the adapter card shown in Fig. 2.34 and describe its function.

Fig.2.34: Adapter card
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3.	 Through the guidance of the teacher, mount an adapter card using the following 
guidelines:
(a)		Turn the computer off and ensure that you carry out proper ESD procedures.
(b)		Position the controller card upright over the appropriate expansion slot.
(c)		Place your thumbs along the top edge of the card and push straight down. 
(d)		Secure the card to the chassis using the existing screw holes.

2.5.9  Step 9: Mounting a microprocessor
Like other computer components that become obsolete with time, you may find it more 
cost-effective to upgrade the processor than buying a new computer. Before purchasing 
or installing a new processor, make sure it is compatible with the motherboard. For 
example, you cannot install an AMD processor in an Intel motherboard and again  
not all processors from the same manufacturer uses the same socket. 

Activity 2.33: Installing a Microprocessor
In groups or individually, mount a microprocessor onto a motherboard using the   
following guidelines:
1.	 Ensure that the lever is raised up perpendicularly. 
2.	 Gently place the processor in the socket but do not push, as shown in Fig. 2.35. 
3.	 Lower the lever to grip the CPU into place.
4.	 Connect the processor fan to the motherboard.

microprocessor chip

Fig. 2.35: Installing a microprocessor

2.6  Replacing a laptop battery
No matter how well you treat your laptop’s battery, it will eventually degrade and 
die. When the battery weakens, Microsoft Windows gives warning like “consider 
replacing your battery” or adding a red X on the battery icon. This is the time to 
replace the battery to avoid disappointments!
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Activity 2.34: Laptop Battery Replacement

In groups or individually, remove and replace a worn-out laptop battery using the  
following guidelines:
1.	 Press the battery release button or unscrew the cover.
2.	 Remove the battery compartment’s cover.
3.	 Slide the wornout battery out, and then insert the new one.

2.7  Upgrading laptop memory
Like in desktop computers, it is possible to upgrade or replace a  RAM module of 
a notebook PC. Unlike the desktop PC RAM module, notebook PC RAM module 
such as Small Outline DIMM (SoDIMM) are small in size. 

Activity 2.35: laptop memory Upgrade

To upgrade laptop memory proceed as follows:
1.	 Open the computer’s case  or memory compartment cover.
2.	 Insert the RAM module into an available slot at an inclined angle as shown in 

Figure 2.36.

Fig. 2.36: Replacing laptop memory

2.8  Disassembling desktop computer
Disassembling a computer mean detaching external and internal components from 
the system unit. This process involves unplugging, unscrewing and sliding out 
components depending on mechanism used to connect to the system unit or mount 
it onto motherboard. To disassemble a desktop computer, proceed as follows:
1.	 Disconnect the computer from the source of power by unplugging the power 

cable from power supply unit.  
2.	 Unplug peripheral devices attached to the system unit such as monitor, keyboard, 

mouse and printer.
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3.	 Open the outer cover on the system unit by unscrewing or sliding it out. Some 
desktop computers have large knobs you can remove by hand to open the system 
unit cover. 

4.	 Remove the adapter cards by first unscrewing it on the cases, and then gently 
unplug it off the motherboard as shown in Fig. 2.37.

Fig. 2.37: Adapter card
5.	 Remove the fixed drives such as hard disk and optical (CD/DVD) drives by 

unscrewing and disconnecting them from power supply unit. Next, disconnect 
the IDE or SATA interface cable that connects the drive to  the motherboard. 

6.	 Remove memory (RAM) modules by pressing the tabs located on both ends 
down away from the memory slot. The module will lift slightly. Carefully hold 
the module by the edges and to remove it from the motherboard. 

7.	 Remove the power supply unit starting with power connector to motherboard, 
CPU fan cabinet fan, power buttons and drives if any. Next, unscrew the unit to 
unmount it from the system casing  

8.	 Remove the CPU and its fan by first unscrewing the cooler fan from the 
motherboard. You unlock the processor from the socket by lifting the level as 
shown in Fig. 2.38. 

Fig. 2.38: Unlocking the processor
9.	 Finally, unscrew the motherboard to unplug it from the system unit casing. This 

leaves you with an empty shell of the casing.
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Assessment Exercise 2.2
1.	 Differentiate between the following:

(a)		EIDE and SATA hard disk drive.
(b)		Baby AT and ATX motherboard.
(c)		PGA and SECC processors.
(d)		AMR and CNR expansion cards.

2.	 Explain why it is important to use the right tool for the right purpose when 
repairing, upgrading or assembling a desktop PC.

3.	 List some of the common tools available in a computer maintenance 	toolkit.
4.	 Explain five types of expansion cards used on desktop computers.
5.	 Outline the procedures you would follow to install the following: 

(a)		PGA2 processor.
(b)		DDR2 RAM module.
(c)		CNR modem add-on card.

6.	 You have just installed a new power supply, but the computer doesn’t seem to be 
getting any power. What might be the problem?

7.	 You want to upgrade your BIOS by “flashing” it. Outline the procedure you 
should follow.

8.	 Explain how you would perform the following operations:
(a)		Replace a faulty notebook PC battery.
(b)		Upgrade laptop memory.
(c)		Add a PC card.

Activity 2.36: Assembling a desktop computer
University of Rwanda College of Science and Technology (URCST) has started a 
project aimed at assembling state of art desktop computers. As a member of the team, 
you are required to identify the components required to assemble a desktop computer.
1.	 Demonstrate step by step how to assemble a PC starting with the 		

following internal components:
•	 Motherboard
•	 Processor
•	 RAM
•	 Harddisk drives 

2.	 Assuming you are using a single EIDE controller to mount two CD-ROM/DVD 
drives, explain how you would configure the two drives. 

3.	 One of the clients makes a call informing you that one of the computers she bought 
consistently loses its date/time settings. Outline the procedure you would follow 
to solve the problem.
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2.9  Cleaning and disposal of computer components
Regular cleaning and proper disposal of computer components is a proactive 
environmental and social practice that helps in mitigating health and environmental 
problems. 

2.9.1  Cleaning using liquids 
Before using a liquid cleaner, make sure that the computer or device is off and 
completely dry. Before cleaning a computer, take note of loose components or 
connections and tighten them up. 

Activity 2.37: Cleaning computer devices
1.	 Highlight three benefits of cleaning a computer and peripheral devices regularly.
2.	 Using mild, soapy water and lint-free cloth, wipe off dusty components such as 

keyboard, mouse, system unit and monitor.  For devices that are damaged by water,  
make use of chemical or alcohol solvents. Note that some chemical solvents may be 
hazardous to humans and the environment hence they should be handled with care.

2.9.2 Blowing dust and debris
Dust can cause electrostatic discharge leading to overheating of components  inside 
the computer while debris may affect the mechanical parts. To remove debris, a blower 
shown in Fig. 2.39 uses compressed air to remove such debris dust in system unit, 
keyboard, expansion slots and ports.  

Fig. 2.39: Blower

Activity 2.38: Blowing Dust and Debris
1.	 To remove dust and debris in the system unit, use a blower or hand-held vacuum 

cleaner. 
2.	 Using a hand-held vacuum cleaner, carefully clean inside the computer making 

sure you do not damage delicate components.

2.9.3: Replacing printer cartridges 
Although there are various types of printers and associated models, we follow the 
same basic steps to replace ink or toner cartridges. In this section, we outline general 
procedure for replacing ink or toner cartridge regardless of printer type and model.
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1.	 Turn on your printer and open the lid/flap that encloses the cartridges and then 
remove the cartridge or cartridges you want to replace as shown in Fig. 2.40.

Fig. 2.40: Removing cartridge
2.	 Take note of the cartridge model number and type. This is the number that you 

use to purchase new cartridge.  If you are unsure of the number, take the cartridge 
as sample to a vendor for help.

3.	 Once you purchase a new cartridge, remove the protective sticker covers, strap 
and sticker before installing the cartridge such as shown in Fig. 2.41.

Fig. 2.41: Removing packaging on cartridge 
4.	 Gently insert the cartridge into the printer. Note that most cartridges easily lock 

into place with a little pressure.
5.	 Once you install the cartridge(s), connect the printer to the computer, and print a 

test page to make sure that the cartridges have been installed correctly. You may 
be required to reconfigure printer heads for best quality. 

Activity 2.39: Safety Precautions
1.	 In the class, discuss how the government clean-up activities  in Rwanda has helped 

in dealing with disposal of computer parts, cartridges and plastic bags that come 
with some computer components. 

2.	 Explain health and environment dangers that may occur due to improper disposal 
of laptop or mobile phone batteries containing lithium, mercury, or nickel-
cadmium.  
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Assessment Exercise 2.3
1.	 A customer is complaining that the power in the office sometimes surges, some 

times causes blackouts and has EMI. What single device should you recommend 
to help the most in this situation?

2.	 A printer in the college office has recently started experiencing paper jams. They 
seem to be occurring quite frequently. Explain the probable causes.

3.	 A printer is producing garbled printouts with characters that don’t make any sense. 
Identify the likely cause.

4.	 State two components that are most likely to be replaced in a laser printer
5.	 Explain why it is important to regularly blow out dust from a computer. 
6.	 State the cleaning solution to CD/DVD drive, keyboard and monitor

Unit Test 2
1.	 Write the following abbreviations in full as used in computer systems: 

(a)	USB		  (b) SCSI		  (c) IDE
2.	 Explain the following features:

(a)	PGA2 socket		  (b) Local buses
(c)	Cache memory		 (d) Memory banks

3.	 Explain four types of ports available on a computer giving one example of a 
device connected to each.

4.	 Differentiate between CRT and LCD monitors giving two advantages of each.	
5.	 A customer is planning to buy a computer and has approached you for advice. 

The customer wants to use the computer for digital video editing. Explain six 
hardware requirements the customer should consider.	

6.	 You have decided to upgrade the processor and memory capacity of a computer 
from duo core 1.7 GHz with 256 MB of RAM to i7 processor and 4GB of RAM.  
Outline the steps you would follow.

7.	 Outline the  procedure you would follow to replace a power supply unit.                    
8.	 Your computer has three hard drives installed; two on the primary controller and 

one on the secondary controller. You are planning to install a fourth drive without 
changing the designations of the existing drives. Outline the procedure you would 
follow to install and configure two IDE drives such as a hard disk and a CD drive 
on a single Hard Disk Controller.

9.	 A customer has complained about a problem in playing audio music though the 
media player shows that the music is playing. Describe the steps you would follow 
to troubleshoot the problem.

10.	Explain the importance of preventive maintenance, highlighting some routine 
maintenance practices that need to be carried out in a computer laboratory. 
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Key Unit Competency
By the end of the unit, learners should be able to integrate safety guideline, ergonomics 
and ethical issues in computer use to have a good working environment.

Unit Outline
•	 	General safety guidelines
•	 Ethical issues

Introduction
Although computers are useful tools, they can be harmful to health and environment. 
Furthermore, some computer components are delicate hence need to be handled with 
care. In this unit, we discuss safety precautions and ethical use of computers in order 
to protect the environment, computers and users from harm.

3.1  General Safety Guidelines
To achieve productivity and healthy work or learning environment, most organizations 
put in place safety precaution guidelines to be observed when using mechanical or 
electronic devices. In this section, we discuss some of general safety guidelines that 
relate to safe use and care of computers and computer accessories. As a guide to ’best 
practice’, the guidelines and procedure discussed reflects identification precaution 
against common health problems, fire outbreaks, physical damage, climatic and 
environmental pollution.

3.1.1  Common health problems

Prolonged use of computers and electronic devices may expose users to health risks 
such as Repetitive Strain Injuries (RSI), eye strain, headache, dizziness and electric 
shock. Below is a brief description of common health conditions arising from use of 
computers and electronic devices:
•	 Repetitive strain injuries results from wrist, hand, muscle,  tendonitis and neck 

strains due to repetitive tasks such as typing. 
•	 Persistent use or poor display of a computer monitor may cause computer vision 

syndrome whose symptoms include eyestrain, headaches and double vision.

SAFE AND ETHICAL USE OF 
COMPUTERSUnit 3
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•	 Dizziness is a condition caused by lack of enough oxygen due to overcrowding 
or poor ventilation of a computer lab.

•	 Electric shock may be caused by touching live uninsulated power cables. To 
protect users against electric shock, power cables and power sockets should be 
well insulated.

Activity 3.1: Safe Use of Computers

1.	 In groups, identify five factors that need to be considered in order to minimize 
health risks such as RSI and eye strain.

2.	 Electric power cables or surface of unearthed electronic equipment may expose  
users to health risk. Identify such health risks.

3.	 Explain why it is not advisable to take food substances and drinks in the computer 
lab.

4.	 In class, discuss effects of electromagnetic and radiowaves emitted by electronic 
devices such as monitors and mobile phones. How can the effects be minimized?

3.1.2  Ergonomic furniture and equipment
The term ergonomic refers to applied science of equipment design with the purpose 
of optimising productivity while minimizing discomfort and fatigue. Good organic 
furniture and equipment helps in preventing health related risks such as arthritis, 
backache and fatigue. For example, a chair should be adjustable or movable to 
minimize fatigue experienced when using a computer. 
Fig. 3.1 shows a sample of a table and adjustable chair that may be used in an office 
for computer laboratory. Notice that the chair has an upright backrest and high enough 
to allow user’s line of sight to be at the same level with top of the monitor.  

Fig 3.1: Ergonomic furniture and equipment
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3.1.3 Correct sitting position
The correct sitting position is the posture in which you hold your sit or use ergonomic 
furniture to keep the bones and joints in the correct alignment. This helps in decreasing 
abnormal wearing of joint surfaces as well as reduce stress, backache, eye strain and 
fatigue. Good sitting position requires a table to be of the right height relative to 
the chair to provide comfortable hand positioning as shown in Figure 3.2. The seat 
should have an upright backrest and should be high enough to allow the eyes of the 
user to be level with the top of the screen.

Feet flat on 
the floor

Keep shoulders relaxed

Elbows about 90°

Hip angle 90° 
or slightly more

Adjust chair to 
support lower back

Thighs parallel 
to floor

(a) Correct sitting posture for desktop computer (b) Correct sitting posture for laptop

Keep wrists 
straight when 
typing

Source 
document at 
same height 
and distance as 
screen

Top of screen at or 
slightly below eye level

Comfortable 
viewing distance 
40 cm to 70 cm 40 cm-70 cm

Keyboard about 
elbow height

Fig 3.2: Correct sitting position

3.1.4 Fire Safety Guidelines
To protect computers and electronic equipment from accidental fire, there is need 
for schools to enforce fire safety guidelines. Fire safety guidelines should emphasize 
among other measures on where, how and when to use smoke detectors and fire 
extinguishers. 

3.1.1.1 Smoke detectors
A smoke detector shown in Fig. 3.3(a) is a device used to detect smoke as an indicator 
of fire outbreak. Once a smoke detector senses smoke, it may trigger a fire alarm 
systems or produce audible and visual signal.  

3.1.1.2 Fire extinguishers
A fire extinguisher (Fig. 3.3(b)) is a fire protection device used extinguish or control 
fire on solids, flammables and electrical devices. The four common types of fire 
extinguishers are water fire extinguishers, foam fire extinguisher, dry powder fire 
extinguishers and carbon dioxide (CO2) fire extinguishers. Although the water-based 
fire extinguishers are the cheapest and most common, it is advisable to install carbon 
dioxide (CO2) fire extinguishers in a computer laboratory. This is because water may 
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cause corrosion of metallic components while dry powder may increase friction and 
wear of mechanical parts.

(a) Smoke detector (b) Fire extinguisher

Fig 3.3: Fire safety devices

Activity 3.2: Fire Safety Guidelines
Visit various rooms in the school compound to identify whether the fire extinguishers 
have been installed. If installed:  
•	 What is the content of the extinguisher - liquid or non-liquid?
•	 Write down instructions provided on how use one of the extinguishers.
•	 Explain why liquid-based fire extinguishers are not recommended for use in a 

computer lab.

3.1.3  Physical Damage
Computers and electronic devices should be protected from physical  damage that  
may emanate from poor handling, electrostatic discharge (ESD) and unstable power 
supply. 

3.1.5.1  Electrostatic Discharge
While opening a door with a metallic door when walking on a carpet, you may 
have experienced some form of electric shock. Such an experience is referred to 
as electrostatic discharge. Electrostatic discharge (ESD) refers to flow of static 
electricity when two triboelectric objects come into contact. Triboelectric objects 
are those that develop an electric charge when they rub against each other due to 
friction. ESD that is caused by build-up of electrostatic charges on your body! 
Fig. 3.4 shows an illustration of a symbol used to mark devices that are ESD sensitive. 
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Fig 3.4: ESD warning symbol

Activity 3.3: Electrostatic Discharge
1.	 In reference to physics or electronics, explain the principle behind static electricity 

and electrostatic discharge. Identify common examples of triboelectric objects.
2.	 In groups, conduct practical experiments to demonstrate how static electricity 

builds up on our dielectric materials. How do you measure electrostatic voltage?
3.	 Discuss some of the risks posed by electrostatic discharges and  how to prevent 

such risks from damaging electronic components.

3.1.6  Power devices
Computers and electronic devices require stable and correctly rated electric power. 
To protect the computer from damage that may be caused by irregular power supply, 
two commonly used devices are surge suppressors and Uninterruptible Power Supply 
(UPS). A surge suppressor also known as surge protector such as the one shown in Fig 
3.5(a) is a device used to limit voltage supplied to electrical appliances. For example 
if the input voltage is more than 240 volts, the surge suppressor steps it down to a 
maximum of 240 volts hence protecting devices from electrical damage.

An uninterruptible power supply UPS such as shown in Fig. 3.5(b) is device that 
provides emergency power backup in case the main power source fails. 

(b) Uninterruptible power supply (UPS)(a) Surge suppressor

Fig 3.5: Power protection devices
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Activity 3.4: Power Protection Devices
1.	 In the computer lab or school compound, demonstrate how a standard UPS can 

be connected to a computer.
2.	 Research from internet how UPS regulates power supply to computers in case of 

power surge, brownout or blackout. 
3.	 Assuming the school intends to purchase several UPS units to setup in a new 

computer lab of forty computers. Advise the management factors to consider 
before  purchasing the UPS.

3.1.7  Climatic Change 
Climatic change may affect computers and electronic equipment in a number of ways. 
For example, high temperatures affect functioning of semiconductor chips, while with 
high humidity causes corrosion of metallic components. To protect computers from 
damage during dry weather, dust covers and spread air conditioners should be used.

3.1.8  Protecting Environment from contamination
Poor disposal of e-waste such as computer parts, CRT and LCD monitors, batteries, 
toner cartridges, plastic bags, chemical solvents, and printers such as the one shown in 
Fig.3.6 poses great environment risk. For example, long-term exposure to chemicals 
and components containing lead, candium, chromium, and mercury damages the 
nervous system, kidneys, bones, and endocrine system. Therefore, disposal of such 
e-wastes is not advisable and therefore should be regulated by establishing policy 
guidelines to avoid health risks and environmental pollution.  

Fig 3.6: e-waste disposal
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Activity 3.5: Computers and Environmental Protection
1.	 Define the term e-waste and discuss in class why it is important for Rwanda 

government to enforce e-waste disposal legislation and policy guidelines.
2.	 Disposable computers and electronic equipment may contain valuable components 

precious metals, glass and plastics which if recovered could provide business 
opportunities. Demonstrate your innovation and entrepreneurship skills by 
forming mock-up business entities that converts e-waste into commercial products.

3.2  Ethical issues
The term ethics refers to a set of moral principles that govern the behaviour of an 
individual or society. In this regard, computer ethic refers to a set of moral principles 
that regulate use of computers. In this era termed as information age, lack of laws 
and standards on use of connected devices such as computers and mobile phone has 
raised numerous ethical concerns. The following are ethical issues that should be 
addressed at individual, social, and political level:
•	 Flaming: Flaming refers to messages that contain offensive, obscene or immoral 

words spread via social media applications such as WhatsApp and Facebook.
•	 Forgery: Availability of computers and high resolution imaging devices has 

made it possible for criminals to forge certificates, money and identity cards.
•	 Piracy: Piracy is a form of theft on intellectual property on copyrighted software 

products without proper authorization. To avoid violation of copyright laws, you 
need to understand various software licenses. These are commercial (propriety), 
freeware, shareware and open source discussed in the next unit under software 
installations.

•	 Terrorism: High penetration of internet and mobile phones has exposed most 
countries to evil plans of terrorists across the globe. 

•	 Pornography: Availability of pornographic material in form of pictures and video 
has affected moral values of young children leading to immoral behaviour such 
as homosexuality and pre-marital sex.

•	 Fraud: Computers and mobile phones are being used to steal other people’s 
account details or money through fraudulent means such as fake websites and 
SMS messages. 

•	 Corruption: Corruption has become social evil in private and public institution 
because it is seen as the easiest means to gaining social, economic or political 
favours. In some countries, mobile and internet-based money transfer has opened 
doors to corrupt behaviour that goes unnoticed by law enforcement agents.
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Activity 3.6: Ethical Issues
1.	 In goups, brainstorm on how technology use has influenced our morals in terms 

of communication, privacy and intellectual property rights.
2.	 In open class discussion, brainstorm on ethical challenges arising from the use 

of computers and mobile devices.
3.	 On the internet, search for the ten commandments of computer ethics proposed 

by Computer Ethics Institute.
4.	 In group discussions, identify open source or proprietary software installed in the 

computers indicating the intellectual property or copyright owner.  

Unit Test 3
1.	 Identify two alternative sources of backup power in case of blackout or brownout 

of main electricity. 
2.	 Explain why it is important to avoid overcrowding in a computer lab.
3.	 Outline the procedure you would follow to put out fire in a computer lab that 

may have been caused by electrical fault.
4.	 Explain why it is not advisable to eat or drink in a computer lab.     
5.	 State two reasons that make use powder-based fire extinguishers in a computer 

lab unsuitable.
6.	 Differentiate between UPS and surge suppressors in terms of functionality.	
7.	 Identify some of the causes of health risks such as computer vision syndrome, 

back pain and failure of endocrine system.
8.	 Discuss the concept of ergonomics in terms of keyboard layout, office furniture, 

and adjustable computer displays.
9.	 Outline policy guidelines that regulate acquisition  and disposal of ICT equipment 

outlined in Rwanda’s e-waste disposal policy. 
10.	In reference to computer software, explain three types of end-user licenses giving 

an example of each.
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Key Unit Competency
By the end of the unit, learners should be able to:
•	 Install Operating System and Other Application Software.
•	 Use disk management tools.

Unit Outline
•	 Types of computer software.		  •	 Installing operating system.
•	 Software license.		  •	 Installing device drivers.
•	 Software installation fundamentals.	 •	 Installing application software.
•	 Disk management.		

Introduction
Having learnt about various computer hardware devices and software, it is important to 
have some basic skills on how to install computer software and manage the hardware 
and software resources. In this unit, we discuss various types of software classified 
according to purpose and acquisition. Later, we demonstrate how to install operating 
systems such as Microsoft Windows 10, device drivers and application programs.

4.1  Classification of computer Software

Generally, there are several ways of classifying computer software. In this book, 
let’s discuss only two ways of classifying software i.e. according to purpose and 
acquisition.

Activity 4.1: Classification of Computer Software
1.	 Research as an individual from the internet and books on:

(a)	 The classification of computer software.
(b)	 Purpose of each category of software.

2.	 Present your findings in your  group discussion. 

4.1.1  Classification according to purpose
Computer software may be designed to manage hardware resources or to help the 
user accomplish specific tasks. In this regard, computer software may be classified 
as system software or application software.

COMPUTER SOFTWARE IN-
STALLATIONUnit 4
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4.1.1.1  System software
System software performs a variety of fundamental operations that avails computer 
resources to the user. These functions include:
1.	 Booting the computer and making sure that all the hardware elements are working 

properly.
2.	 Performing operations such as retrieving, loading, executing and storing 

application programs.
3.	 Storing and retrieving files.
4.	 Performing a variety of system utility functions.
System software can further be subdivided into four sub-categories namely: 
1.	 Operating systems.	
2. 	 Firmware. 
3. 	 Utility software. 
4. 	 Networking software.

(a)  Operating systems
An operating system refers to a type of system that software manages the hardware 
and control execution of application programs installed on the computer. To avoid 
conflicts, the operating system coordinates and schedules access to shared resources 
such as CPU, primary memory, storage devices, input devices, and output devices. 
Common examples of operating systems used on computers and portable devices 
include Android, Microsoft Windows, Linux, and Apple Macintosh. Examples of 
common operating systems include Linux  and Macintosh (MacOS), and Microsoft 
Windows (e.g. 2000, XP, Vista, 7, 8, 10).  

(b)  Firmware
Firmware is software embedded in a computer hardware or a computer program 
in a read-only chip data that is stored on a hardware device’s read-only memory 
to provides instruction on how the device should operate. Unlike normal software, 
firmware cannot be changed or deleted by an end-user without the aid of special 
programs. For example, devices like microwaves, digital cameras, and scanners have 
firmware used to control their basic operations.  

(c)  Utility software
Utility software is a special program that performs commonly used services that make 
certain aspects of computing go on smoothly. Such services include sorting, copying, 
file handling, disk management etc. The two basic types of utility software are:
1.	 System-level utility: These helps the user to work with the operating system and 

its functions. For example, a utility software tells the user when he/she enters a 
wrong command and gives suggestions how the error can be corrected. 

http://www.computerhope.com/jargon/e/enduser.htm
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2.	 Application-level utility: These are utilities that make application programs run 
more  smoothly and efficiently. Such utility programs are commonly purchased 
separately or may be part of an operating system. 

(d)  Networking software
This type of software is mostly used to establish communication between two or more 
computers by connection them using a communication channel like cables to create 
a computer network. Networking software enables the exchange of data in a network 
as well as providing data security. Network software may come as independent 
software or integrated in an operating system. An example of networking software 
is novel netware. 

4.1.1.2  Application software

Application software, also known as application packages (apps) are  programs that 
are designed to help users accomplish specific tasks. Table 4.1 gives examples and 
uses of common apps. 

Software Examples
Word processors Microsoft Word, Lotus Word pro, Open 

Office, Writer.
Spreadsheets Ms Excel, Lotus1-2-3.
Desktop publishing Microsoft Publisher, Adobe Indesign
Computer Aided Design Autocad.
Databases Ms Access, My SQL, Foxbase, Paradox.
Graphics software Coreldraw, Photoshop.

Table 4.1: Application software

4.1.2  Classification according to acquisition
Software can be classified according to acquisition as in-house developed or vendor 
off-the-shelf software.

4.1.2.1  Bespoke software
Bespoke or tailor-made software is a program developed or customized for a 
specific end-user or organization. For example, a bank may decide to manage hire 
programmers to develop an application for managing user’s sms-based access 
to banking information and services  via mobile  phones. Once developed, such 
application cannot be sold or transferred to another organization or end-user. 

4.1.2.2  Off-the-shelf software
Vendor off-the-shelf software are applications that are developed and packaged 
for sale or distribution via software vendors. Due to competition, most software 
developers bundles more than one application into integrated  suite of programs 
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such as Microsoft-Office 2013, Adobe Master Collection and Corel Suite. This the 
reason why the word 
package is sometimes used to refer to software product that are packaged and made 
available for paid-up download or purchase from software vendors. 

Activity 4.2: Classification of Software
1.	 Discuss with your classmate the various ways a user (individuals and organisations) 

can acquire software for their use.
2. 	 Identify the advantages and disadvantages of each method of software acquisition.

4.2  Software Licensing 
Software is very crucial in accomplishing what we do with our computers and portable 
devices. To acquire, install and use software that is protected by copyright, you may 
have to download it for free or pay for license fee. Depending on conditions and 
restrictions imposed by the End-User-Licence Agreement (EULA), computer software 
may be classified into open source, proprietary, freeware, and shareware. 

4.2.1  Open source software
Open source refers to software whose source code (set of instructions) is made 
available to users. The conditions and restrictions of open source EULA encourages 
the end-users to acquire the source code, modify and distribute modified versions 
of the original software. Examples of open source software include Linux operating 
system, OpenOffice, Mozilla Firefox, Thunderbird e-mail software, Apache web 
server, and MySQL database management system.

4.2.2  Proprietary software
Proprietary software refers to commercial software whose source code is hidden from 
users. Modifications are only made by the software manufacturer. Proprietary software 
may be licenced for use at a fee or limited trial period. Examples of  proprietary software 
that a user is required to pay for licence or use include Microsoft Windows, Microsoft 
Office, Adobe Acrobat Professional, Adobe Master Collection and CorelDraw.

4.2.3  Freeware 
Freeware is a category of software whose license allows for free of charge acquitition, 
use, making copies and distribution of copyrighted software for unlimited time. Unlike 
open source software, Freeware EULA does not allow users to modify or extend the 
software for sale as a commercial product. Examples of Freeware software include 
Adobe Reader, Google Talk, and AVG Free Antivirus.

4.2.4  Shareware
Shareware is licensed commercial software that allow users to freely make and 
distribute copies of the software. The copyright holder for shareware may impose some 
conditions and restrictions in EULA that demand that, after testing the software, you 
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pay to continue using it. Therefore, providing software as shareware is a marketing 
decision that does not change requirements with respect to copyright. Examples of 
shareware software include Winzip, Adobe Acrobat Professional Edition, Internet 
Download Manager (IDM) and CloneDVD.

4.2.5  Ethical Use of Software License
The four categories of software licences discussed above impose legal, ethical and 
privacy conditions the user must agree with prior to acquisition and use. Unfortunately, 
some users engage in unethical behaviour such as piracy that violates software license 
agreement.  The following are facts about piracy on copyright protected software:
•	 	Piracy is illegal: Copyright law and intellectual property rights protects software 

authors and publishers, just as patent law protects inventors. 
•	 	Piracy is shameful act: Piracy can harm the image of an individual, community 

or country. If unauthorised copying proliferates in a society, the community losses 
integrity and incur legal liability. 

•	 	Piracy is intellectual property theft: Unauthorised copying of software is a form 
of theft that can deprive software developers of a fair return from products of 
their intellectual work.

Caution: It is important that you carefully read the license agreement when you acquire 
software from the copyright owner. This will help you understand the conditions and 
restrictions of the license on what you can and cannot do with the software.

Activity 4.3: Software License
1.	 Research and then discuss with your classmate various categories of software 

installed in the computers in computer lab or school offices. 
2.	 Read terms and conditions in the licence agreement of Windows 10, Ubuntu 

Linux, and Office 2013.

4.3  Software Installation Fundamentals
The number of computer programs installed on a computer is only limited to hardware 
specifications such as processor type, memory and storage capacity. Once a computer 
meets recommended specifications, software installations is mostly an automated 
process handled by a utility known as installer.  This section demonstrate how to 
install Windows 10, drivers and Office 2013 on a standard PC. 

4.3.1  System requirements
Before installing computer software whether an operating system, device drivers or 
application software, there are minimum or recommended system specifications that 
should be considered in terms of: 
•	 Memory (RAM) capacity.
•	 Free hard disk space. 
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•	 Processor type and speed.
•	 Graphics display.
For example, the following are the minimum and recommended system requirements 
for installation of Microsoft Windows 10 on standard desktop and laptop PCs:
•	 Processor type and speed: 1 Gigahertz (GHz) of CPU Speed or faster with support 

for PAE, NX, and SSE2 
•	 Memory capacity: 1 Gigabyte (GB) of RAM on a 32-bit or 2 GB on 64-bit machine
•	 Storage space: 16 GB free-disk space on 32-bit or 20 GB on 64-bit machine
•	 Graphics card: Microsoft DirectX 9 graphics controller with WDDM driver

Activity 4.4: Software Installation Requirements
In groups, research on the internet minimum and recommended specification for 
installing the following:
•	 Latest version of Microsoft Office 
•	 Latest release of Kaspersky Antivirus
•	 Latest Ubuntu Linux 

4.4  Disk Preparation
Operating systems have software utilities or tools for preparing a new storage media or 
disk for use. Two commonly used disk preparation utilities are  those for partitioning 
and formatting. Note that due to sensitivity of these operations, do not attempt these 
operations on a hard disk without the help of your computer teacher or computer lab 
assistant.   

4.4.1  Disk Partitioning
Partitioning a disk refers to the process of dividing a large physical disk into two or more 
partitions called logical drives that are treated as independent drives. Before partitioning  
a hard disk, you need to consider the type of file system (filesystem) to be created 
on each partition.  A filesystem is the structure used by operating system to store, 
retrieve and update data on storage device.  Examples of Windows filesystems include 
File Allocation Table (FAT32), New Technology File System (NTFS) and extended 
FAT (extFAT). To partition drive on a computer with no operating system, proceed 
as follows:
1.	 Mount the installation media such as DVD or flash drive onto the computer.
2.	 Switch on the computer and press the key that enters BIOS setup.
3.	 Change boot sequence in order for the computer to boot from the installation 

media.
4.	 Once the windows setup that requires you to specify where to install windows, 

create a new partition. You may also delete existing partitions but this is a sensitive 
task that results to loss of data or programs.
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Activity 4.5: Disk management
Microsoft Windows 10 come with in-built disk management utilities used for creating, 
resizing and deleting disk partitions. If you have Windows 10 installed, perform the 
following tasks:
•	 Demonstrate and outline steps on how to access the disk management utility.
•	 Demonstrate  and outline steps on how to create, and delete or resize  an existing 

partition.

4.4.2  Disk Formatting
Disk formatting is the process of preparing a data storage media such as a hard 
disk drive, solid-state drive (SSD), or USB flash drive or memory card for first 
time use. In some cases, the formatting operation may also create one or more new file 
systems. One reason for formatting a storage media is to make it compatible with the 
operating system. You may also format used media to make it blank for another use. It 
is important you back-up the media to be reformatted to avoid losing important files. 
To format storage media such as a flash disk, proceed as follows:
1.	 Click Start button, and then click File Explorer on the Start menu.
2.	 In the File Explorer window, click This PC on the left pane. The drives mounted 

on the PC are displayed on the right pane.  
3.	 Right click on the drive to be formatted, and then click Format.
4.	 Specify the Capacity, File System and Allocation unit size as shown Fig.4.1.
6.	 Click Start button to format the drive.

drive/partition size

file system

drive label

		  Fig.4.1: Formatting storage media

https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/File_system
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4.5  Disk Management
Most operating systems come with Disk Management tools used for maintenance of 
storage media mounted on your computer. Some of the routine tasks performed by 
Disk Management include formatting, creating and deleting partitions,  drive cleanup, 
disk scanning, system files checking, compression, defragmentation of drive, backup 
and restoration. In this section, we go beyond drive formatting and partitioning 
discussed earlier to other disk management routines in Windows 10.

4.5.1  Disk Cleanup
Disk cleanup is a maintenance utility used to free up space on a hard disk by deleting 
unnecessary files and Windows components that are no longer in use. This include 
temporary internet files, downloaded program files and files in the recycle bin. To 
cleanup disk, proceed as follows:
1.	 Right click This PC on the desktop then click Manage to display Computer 

Management window.
2.	 Click Disk Management on the left pane of Computer Management window to 

display the list of drives.
3.	 Right click the drive you wish to cleanup, then click Properties. In the General 

tab of properties dialog box, click Disk Cleanup button.
4.	 In the cleanup window that appears, select the files to be deleted then click OK 

to cleanup the storage media.

Activity 4.6: Disk Cleanup
1.	 Demonstrate how you would start disk cleanup utility in Windows 10, Linux or 

Android operating systems.
2.	 In Windows 10, identify types of files and components that can be removed using 

cleanup tool in order to save on hard disk space. 
3.	 Demonstrate and outline procedure for removing temporary files and Windows 

components on a hard disk.

4.5.2  Scanning disks
To check storage media for errors, most operating systems comes with check disk 
utility. In Windows, ScanDisk  utility allows the user to scan and repair files and 
physical errors on storage media. When errors are encountered, ScanDisk marks 
affected sectors to prevent the operating system from storing information on them. 
To check a disk for errors, proceed as follows:
1.	 Click File Explorer on the Start menu to display the explorer window.
2.	 Click This PC on the left pane of File Explorer to display the drives.
3.	 Right click on the drive you wish to  scan, and then click Properties. 
4.	 In the  Properties window that appear, click on the Tools tab.
5.	 Under Error Checking, click Check button shown in Fig.4.2.
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6.	 On the pop-up window that appears, click Scan drive.

Fig. 4.2: Scanning disk for problems

4.5.3  System File Checker
System File Checker (SFC) is a utility available in Windows 10 used to check for 
corrupted operating system files. The SFC utility scans all system files and repairs 
corrupted ones where possible. To run the system file checker in command prompt, 
proceed as follows:
1.	 Right-click the Start button to display the context menu as shown in Fig. 4.3. 

Fig.4.3: Start context menu
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2.	 Click Command Prompt (Admin) to display the command prompt window.
3.	 Type sfc /scannow then press the enter key to start the scan process shown in 

Fig. 4.4.

Fig.4.4: Windows system file checker 

4.5.4  Disk Defragmentation 
A storage media may have files scattered all over the surface of the disk hence resulting 
to wastage of space and slow seek time. Defragmentation is the process of moving 
file fragments to contiguous clusters to optimize on storage space and performance. 
To defragment (defrag) a storage media, proceed as follows:
1.	 Click the Start button, and then click on File Explorer on the Start menu.  
2.	 In the File Explorer window, click on This PC to display installed drives.
3.	 Right click on the drive you wish to defrag, then click Properties.
4.	 Click Tools in properties dialog box, then click the Optimize button  
5.	 In the Optimize window, select the drive and then click the Analyze.  
6.	 Click Optimize button to start defrag process as shown in Fig. 4.5

Fig.4.5: Disk defragmentation
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4.5.5  Disk Compression
Disk compression is a management routine used to store files in compressed versions 
to save on disk space. When an Operating System (OS) attempts to save a file on 
a compressed disk, the compression utility intercepts the file and compresses it. 
Likewise when an OS attempts to open the file, the utility decompresses it first. To 
compress a storage media, proceed as follows:
1.	 On the Start menu, click on File Explorer.
2.	 In the File Explorer window, click on This PC to display installed drives.
2.	 Right click on the drive to be compressed, then click Properties. 
3.	 Click the General tab, then select Compress this drive to save disk space check 

box as shown in Fig. 4.6.
4.	 Click Apply to display the popup window shown in Fig. 4.6.
5.	 Select compression option, then click OK to to close the pop-up window.
6.	 Finally, click OK to compress the drive.

Fig.4.6: Disk compression
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4.5.6  Disk Backup
It is good practice to constantly keep copies (backup) of your important files on 
another drive to avoid loss of originals. Windows 10 has backup utility located 
under Settings menu used for backing up and restoring files. To use backup utility, 
proceed as follows:
1.	 On the Start menu, click Settings to display Setting window.
2.	 In the Settings window, click Update & security tab.
3.	 In the Update & Security list that appear, click Backup.
4.	 Click  Add a drive under Automatically backup my files as shown in Fig. 4.7.
5.	 Click more options to specify backup options. Backup will be scheduled to 

automatically run as per your specifications.

Fig.4.7: Disk backup

4.5.7  Setting Boot Order
Boot order also referred to as boot sequence defines the order in which the operating 
system should check for the operating system’s boot files. The order can be changed 
in BIOS setup as follows:
1.	 Turn on or restart the computer.
2.	 During power-on-self-test (POST), press the appropriate key(s) to enter the BIOS 

setup screen such as shown in Fig. 4.8.
3.	 Specify boot order so that the computer boots from removable installation media.
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Fig.4.8: Boot sequence

4.6  Installing Operating System
Installation of an Operating System is a fundamental process that starts with 
identifying minimum or recommended system specifications discussed earlier.
In this section, we demonstrate how to download and install Microsoft Windows 10 
Operating System. To start with, we demonstrate how to download windows 10 and 
create a bootable DVD or flash drive. 

4.6.1  Creating Windows 10 Installation Media
To upgrade from previous versions of Windows, Microsoft has adopted a hybrid web 
and media-based installation of Windows 10.  If you opt for installation media, you 
have to download Media Creation Tool from Microsoft’s website. Media Creation 
Tool provides users with  better experience in Windows 10 download compared to 
common download procedure.  To create an installation media, proceed as follows:
1.	 Connect you computer to the Internet and use your favourite browser to visit 

Microsoft website. Navigate to Software Downloads, and search for Media 
Creation Tool. 

2.	 Once the download page is displayed, select either 32-bit or 64-bit button  
depending on the architecture of your machine. To know the architecture of your   
PC, read the manual that came with the machine or use diagnostic utilities. 

3.	 Download the tool onto your desktop or any location. Once the download is 
complete, select Create installation  media for another PC on the screen shown 
in Fig. 4.9. 
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4.	 The screen shown in Fig.4.10 lets you specify the language, architecture and 
Windows 10 version to be installed. 

Fig.4.10: Installation media  configuration

5.	 In the screen that appears, choose USB flash drive to create bootable media on 
a memory stick. You’ll be required to insert a flash drive of with more that 3GB 
free space. If you prefer using a DVD, choose ISO file so that you burn the image 
onto DVD later. 

6.	 Click Next to start the download process. Once the download is complete, you 
may proceed to Windows 10 installation phase. In the next section, we take you 
through the general steps of installing Windows 10 on a typical desktop PC.   

Fig.4.9: Creating Installation media
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4.6.2  Installing Windows 10  
Like earlier versions of Microsoft Windows, installation of Window 10 is a three-
phase process of copying files, installing features and drivers, and configuring 
settings. Microsoft provide two alternative of installing Windows 10:
•	 Upgrade: Users with licensed versions of Windows 7, 8 and 8.1 can upgrade 

to Windows 10 using the  product key product key they used to install the older 
versions. 

•	 New Installation: To install Windows 10 for the first time referred to as clean 
install, you need to buy the license which you can get via email. Remember it is 
illegal to install pirated copy of Windows 10.

 In this section, we take you through general procedure for installing Windows 10 
for the first time from USB flash drive:
1.	 Insert the USB flash media created earlier using Media Creation Tool. Windows 

10 setup screen shown in Fig. 4.11 is displayed. If the screen does not appear 
automatically, you may be required to change boot sequence in BIOS settings or 
use “Advanced startup options” available on certain devices.

Fig.4.11: Windows 10 setup wizard

2.	 In the next screen shown in Fig. 4.12, enter the product key sent to you through 
e-mail if you are installing Windows 10 for the first time. Alternatively, enter 
the product key that came with older version of Windows 7, 8 or 8.1 that you are 
upgrading.  Click Next to proceed.
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3.	 On the Install Now window, click Install Now button  to display the screen  of  
Fig. 4.13.  Under Which type of installation do you want, choose Upgrade 
if you have a version of Windows 7 or 8 installed on your computer. If you are 
installing Windows 10 for the first time, choose Custom, then click Next.

Fig.4.13: Windows 10 Installation options

Fig.4.12: Windows 10 product key
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4.	 In  the next screen that appears shown in Fig. 4.14, select an existing partition or 
create a new one where Windows 10 is to be installed. Note that partitioning a 
drive is a sensitive task to be handled with care to avoid loss of programs or data. 

Fig.4.14: Selecting disk partition
5.	 Once you specify the partition in which Windows will reside, clicking the Next 

button takes you to the phase of copying Windows 10 files onto the partition as 
shown in Fig. 4.15.  It is after files have been copied that the third phase of drivers 
and features configuration is started. During drivers and features configuration  
phase, the PC restarts several times.

 

Fig.4.15: Copying of Windows system files
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6.	 The moment the settings screen shown in Fig. 4.16 is displayed, choose whether 
the installer should use express or customized setting. For privacy reasons, make 
sure you read and understand the Privacy statement before choosing any other 
two settings. 

Fig.4.16: Specifying Windows pernalized settings

7.	 Next, sign in or create a Microsoft account when prompted as shown in Fig. 4.17. 
Microsoft account is important because it allows the user to access Windows 10 
resources e.g. online emails, cloud, and Apps. 

  
Fig.4.17: Signing up to Microsoft Account

8.	 The final steps is to let the installer configure Apps before the desktop shown on 
Fig. 4.18 is displayed. You are now ready to use Windows 10.
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Fig.4.18: Windows 10 desktop

•	 Important: Once you install and activate Windows 10 on a device for the first time, 
the installer registers your hardware with Microsoft’s servers. You don’t have to 
enter the product key the next time you re-install Windows 10 on the same device.

Activity 4.7. Software Installation
1.	 Install Microsoft Windows 10 in a computer with an older version of operating 

system..
2.	 Configure the following Windows 10 desktop properties. In each case, outline 

the steps followed to carry out the task: 
(i)	 Change the background theme on the desktop. 
(ii)	 Set desktop icons to display This PC, Network and Recycle bin icons. 
(iii)	 Select icons that appear on the taskbar.

Assessment Exercise 4.1
1.	 In reference to EULA, differentiate between open source  software and proprietary 

software.
2.	 Demonstrate step-by-step how to you would partition hard disk. 
3.	 Outline system requirements that need to be considered to install Windows 10 

operating system. 
4.	 Explain why it is good practice to install genuine copy of an operating system.  
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4.7  Installing Device Drivers 
A device driver is a utility program that acts as an interface between a hardware 
device and the operating system. For a hardware device such as printer, keyboard or 
scanner to function properly, its drivers must be installed. Once you connect a new 
device such as a printer to a computer, the operating systems automatically detects 
the device and installs appropriate drivers.  If no drivers found from Windows drivers 
list, you have to download or use drivers that came with the device. 

4.7.1  Installing drivers automatically

Automatic installation of drivers also known as plug-and-play means that once a new 
device is detected by the computer, Windows searches and automatically installs for 
appropriate drivers.  The following are basic steps followed in the installation of  
plug-and-play devices:
1.	 Connect the device to the computer.
2.	 Windows 10 detects the new device and signals plug-and-play service to 

automatically install the device drivers.
3.	 If appropriate drivers are found, the device is automatically installed without user 

intervention.
4.	 The computer may restart to configure the new device. 

4.7.2  Installing drivers manually 
Often computer and hardware manufacturers place the drivers on a storage media or 
provide them online for download.  To manually install drivers, proceed as follows:  
1.	 Right click This PC on the disktop and select Manage. The Computer 

Management window shown in Fig. 4.19 is displayed.
2.	 Select Device Manager, click Action menu, then select Add legacy hardware
3.	 Follow instructions on the Add Hardware wizard that appears. 

Fig. 4.19: Installing drivers manually
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Activity 4.8: Device Drivers Installation
Install printer and scanner in a computer running Windows 10 Operating System.

4.8  Installing Application Software
There are thousands of application software such as word processors, spreadsheets, 
database management systems, desktop publishing software, education software 
among others. Most software developers package several programs into a suite  with 
good example being  Microsoft Office 2013. In this section, we demonstrate how to 
install Microsoft Office 2013 suite on desktop PC: 
1.	 Insert Microsoft Office 2013 DVD or USB installation media into the computer. 

In the license agreement screen that appears, click the check box “I accept the 
terms of this agreement” shown in Figure 4.20.  

             Fig.4.20: End-user license agreement
2.	 Once you accept Microsoft terms of agreement, choose whether to upgrade an 

existing version or custom to install new copy as shown in Fig. 4.21.

Fig.4.21: Office 2013 installation options
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3.	 To upgrade an existing version of Microsoft Office, click Upgrade. Make sure 
the radio button “Remove all previous versions” is selected, and then click Next. 
The installation progress screen shown in Fig. 4.22 is displayed.

 
 
 
 
 
 
 

Fig.4.22: Office 2013 installation progress

4.	 Once the installation process is complete, you may sign in for Microsoft account 
to get online access to your documents from SkyDrive. SkyDrive is a Microsoft 
name for cloud-based storage. Finally, the screen shown in Fig. 4.23 is displayed 
to confirm that you have successfully installed Office 2013.  

Fig.4.23:Office 2013 welcome screen
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5.	 To confirm that Office 2013 has been installed, click the Start button then All 
apps. The list of installed Microsoft Office 2013 apps is displayed as shown in 
Fig. 4.24.

Fig.4.24: Office 2013 Installed apps

Activity 4.9: Installing Apps
Install Microsoft Office 2016 and antivirus in a computer running Windows 10 
Operating System.

Unit Test 4
1.	 Explain the importance of reading the user manual before installing new software. 
2.	 Outline the procedure you would follow to install device drivers and application 

software.  
3.	 State four factors you would consider before purchasing application software. 
4.	 State three hardware requirements to be considered when installing  application 

software. 
5.	 Explain importance of end-user license that comes with proprietary software. 
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Key Unit Competency
By the end of the unit learners should be able to:

•	 Compute numbers in different base systems.
•	 Perform arithmetic operations on binary number.

Unit Outline
•	 Fundamentals of number system.
•	 Number base systems.
•	 Converting decimal to other base systems.
•	 Binary to other base system conversion.
•	 Octal to decimal conversion.
•	 Octal to hexadecimal conversion.
•	 Hexadecimal to decimal conversion.
•	 Decimal fraction to binary conversion.
•	 Binary fraction to decimal conversion.
•	 Negative decimal to binary conversion.
•	 Arthmetic operations on binary numbers.

Introduction
In Mathematics any number is represented by using a set of ten digits ranging from 0 
to 9. However, in digital computers, any type of data is represented using two voltage 
states “on” and “off” represented using 0 and 1. In this unit, we begin by discussing 
types of number systems followed by demonstrations on how to convert numbers from 
one system to another. Later, we take you through four binary arithmetic operations 
namely addition, subtraction, multiplication and division.

5.1  Fundamentals of Number Systems
The term number system refers to a set of symbols or numeric values (numbers) used 
to represent different quantities. In computer science, it is important to understand 
number systems because the design and organisation of digital computers depends on 
number systems. Historically, the ten digits ranging from 0 to 9 used to express any 
number originated from India. Because the number of digits is ten, we refer to it as 
base 10 or decimal number system. 
In digital computers, any type of data whether numbers, alphabets, images or sound is 
represented using a sequence of two digits; 0 and 1. The two digits are referred to as 
binary digits (bits). Because knowledge of number systems is important, we begin this 
section with basic concepts associated with binary and decimal numbers.

NUMBER SYSTEMSUnit 5
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5.1.1  Bit, Byte and Nibble
In digital computers, data is represented using a sequence of bits, bytes, nibble and word:
•	 Bit: Bit is a short form for binary digit referring to a single digit 0 or 1 used to 

represent any data in digital computers. In other words, a bit is the smallest unit 
used to represent data in digital computers.

•	 Byte: A byte is a sequence of bits used to represent alphanumeric characters and 
special symbols. In most cases, computers represent any type of data using a 
sequence of 8 bits.

•	 A nibble: A sequence of four bits representing half of a byte.
Fig. 5.1 shows an illustration that distinguishes the three terms.

Byte Byte

Fig. 5.1: Bit, Nibble and Byte

5.1.2  Magnitude of Numbers
Normally, the magnitude or weight of a digit in a number like 785 can be determined 
using base value (radix), absolute value, and positional (place) value. 
•	 Base value: The base of a number also known as radix refers to the maximum 

number of digits used to represent a number system. For example, the number 
785 falls within numbers 0 to 9 hence it is a base 10 number. When dealing with 
number systems, always remember to indicate the base value. For example, 4510 
shows that 45 is a base 10 number.

•	 Absolute value: This  is the face-value of a digit in a number system. For example, 
5 in 785 has a face value of 5 regardless of its position in the number. 

•	 Positional value: The positional (place) value is the position of a digit relative to 
other digits. For example, Table 5.1 shows the place value of 5 in 785 is ones while 
the digit with highest place value is 7 whose weight is 700. 

Place value Hundreds 102 Tens,101  Ones,100

Digit 7 8 5
Weight 700 80 5

	 Table 5.1: Positional value
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Activity 5.1: Magnitude of numbers
Do a research on the internet on how each of the digits in 485 can be interpreted in 
terms of base value, absolute value, and place value. 

Assessment Exercise 5.1
1.	 Define the following terms:

(a)		  bit		  (b)  byte		  (c)  nibble
2.	 By using an example, differentiate a byte to a nibble.
3.	 Binary number system is fundamental to understanding how a computer works. 

Explain why it is important to understand the concept of number systems.
4.	 Using an illustrations, explain how data is represented in digital computers.

5.2  Number Base Systems
Number systems are determined by the base representing valid digits used to represent 
a number. The four types of number systems used in computing are decimal (base 10), 
binary (base 2), octal (base 8), and hexadecimal (base 16) number systems.

5.2.1  Decimal Number System
Decimal number system consist of ten digits 0-9 most of us are familiar with. The prefix 
deci in the word decimal is a Latin word deci that means ten. Because the decimal 
number system has ten digits, it is also known as a base 10 or denary number system. 
In computing, counting of decimal numbers start from 0.

Significance of Decimal Digits
Significance of a digit refers to its weight that is determined by its absolute and place 
value. In a decimal number system, the most significant digit (MSD) is the leftmost, 
while the least significant digit (LSD) is the rightmost digit. For a number like 7085, 
Table 5.2 shows that 5 is the least significant having a place of 5 while 7 is the most 
significant with place value of 7000.

Place value 103 =1000 102 = 100 101 =10 100 = 1
Decimal digit 7  0 8 5
Weight 7000  0 80 5

	 Table 5.2. LSDand MSD in decimal numbers
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5.2.2  Binary Number System
Binary numbers consist of two digits – 0 and 1 referred to as binary digits, in short’ 
bits. In binary base system, the positional value of a number increases by powers of 
two. When dealing with different number systems, always remember to indicate the 
base of a binary number such as 10112.

Significance of Binary Digits
The most significant digit (MSD) in a binary number is the leftmost digit, while the 
least significant digit (LSD) is the rightmost digit. For example, Table 5.3 shows that 
in binary number like 10112 the LSD on the right has weight of 1 that is   (1 × 20), while 
the MSD has a weight of 8.

Place value 23 = 8 22 = 4 21 = 2 20 = 1
Binary digit 1 0 1 1
decimal value 8  0 2 1

	 Table 5.3. LSD and MSD in binary numbers
NB: The total weight of the binary number 10112 represents 11 in decimal numbers obtained by 
adding: 8+0+2+1 = 1110 
Activity 5.2: Types of number systems
Digital computers use a number system with a base of two, rather than base ten to 
represent any data. This is because it is much easier to engineer circuits that implement 
“binary number system.” 
1) Discuss the four types of number systems and classify them according symbols 

used to represent any number.
2) Represent the following numbers in binary: 15, 20  

5.2.3  Octal Number System
The octal number system also known as octadecimal has  eight digits ranging from 
0 – 7 that are used to represent any number. This means that a number like 785 cannot 
be a valid octal number because 8 in between 7 and 5 is not within 0 to 7 digits.

Significance of Octal Digits
In octal number system, the MSD is the leftmost digit, while LSD is on the right. For 
example, Table 5.4 illustrates an octal number 72458 with 7 being the most significant 
digit with decimal weight of 358410.

Place values 83 =512 82 =64 81 = 8 80 = 1
Octal digit 7 2 4 5
Base 10 value 3584 128 32 5

	 Table 5.4: LSD and MSD in octal numbers
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To get the decimal number equivalent to 7245 we add: 3584 + 128 + 32 + 5 = 3749
Thus; 72458 = 374910.

5.2.4  Hexadecimal Number System
Hexadecimal is a base 16 number system consisting of 16 digits that range from 0 to 
9, and A to F. The letters A to F are used to represent numbers 10 to 15 as shown in 
Table 5.5. Always remember to indicate the base of a hexadecimal number using the 
subscript 16 e.g. 4F916.

Base 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Base 16 0 1 2 3 4 5 6 7 8 9  A B C D E F

	 Table 5.5. Hexadecimal digits

Significance of Hexadecimal Digits
In hexadecimal number system, significance of digits increases from right to left in 
multiples of 16. For example, Table 5.6 shows in 94616, 6 is the LSD while 9 is the 
MSD with decimal place value of 230410.
The decimal equivalent of 94616 is obtained by adding:
2304 + 64 + 6 =2374

Thus 94616  = 237410.
Place value 162 = 256 161 = 16 160 = 1
H e x a d e c i m a l 
digit

9 4 6

Base 10 value 2304 64 6
	 Table 5.6: Significance of hexadecimal numbers
Table 5.7 below shows a summary of the four number systems classified according to 
their base values:

System Base Valid digits Example
Binary 2 01 10012

Octal 8 01234567 56408

Decimal 10 0123456789 564010

Hexadecimal 16 0123456789 ABCDEF 56AF16
	 Table 5.7: Summary of number systems

Activity 5.3: Octal and hexadecimal number systems
In groups of three, discuss the benefits and reasons for using octal and hexadecimal 
number systems.
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5.3  Converting Decimal to other Base Systems
Mathematically, it is possible to convert a number from one base system to another. In 
the following section, we demonstrate how to convert decimal numbers to other base  
systems. 

5.3.1  Decimal to Binary Number Conversion
To convert a decimal number to binary, there are two possible methods, the division-
remainder, and positional-value methods.

5.3.1.1  Division-by-Base Method
In division-by-base method, a decimal number is repeatedly divided by the base until 
the dividend is indivisible by 2. In every division, write down the remainder on the 
right of the dividend. Read the sequence of 0s and 1s bottom-ups that represents the 
binary number. For example, to convert 4510 to binary form, proceed as follow:
	

Explanation
1.	 Divide 45 by 2. We get 22 remainder 1. 
2.	 Next divide 22 by 2. We get 11 remainder 0.
3.	 Continue dividing until the number is indivisible by 2. In this case, 1 is not 

divisible hence we write 0 remainder 1.
4.	 Read the remainder digits as 0s and 1s bottom up.

NB: The remainder in the last division marked with asterisk is 1 because 1 is not 
perfectly divisible by 2 in the previous step.
The following example demonstrates how to convert 10710 to binary form: 

Explanation
1.	 Divide 107 by 2. We get 53 remainder 1. 
2.	 Continue dividing until the quotient is not 

perfectly divisible by 2.
3.	 Read the remainders upwards.

2   107
2   53	R  1
2   26	R  1
2   13	R  0
2   6	 R  1
2   3	 R  0
2   1	 R  1
     0	 R  1

10710 = 11010112

Thus: 4510=1011012

2  45
2  22  R 1
2  11  R 0
2    5  R 1
2    2  R 1
2    1  R 0
      0  R 1× 
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Activity 5.4: Converting decimals to binary form
Using division-by base method, convert the decimal number 247 to binary form. 

5.3.1.2  Place value Method
The second method of converting decimal numbers to binary form is the place value 
method. For example, to convert 24710 to binary form, proceed as follows:
1.	 Start by writing down the place values in powers of 2 up to the value equal to or  

slightly larger than the number to be converted. For example, to convert 24710, 
write down the place values up to 28, i.e. 256 as shown in Table 5.8. 
Place value in 
powers of 2

28 27 26 25 24 23 21 20

Place value in 
decimal

256 128 64 32 16 8 2 1

Table 5.8: Place-value method: Step 1

2.	 Subtract the highest place value i.e 256 from the number as shown in table 5.9. 
If the difference is 0 or positive, write 1, otherwise write 0 if the difference is 
negative.

Place value 28 27 26 20

Difference 247 – 256 247 – 128
Binary digit 0

Table 5.9: Place-value method: Step 2

	 NB: Note that under the place value 28, we write 0 because 247-256 returns a 
negative value. 

3.	 If the difference returned a negative carry forward the number, the next lower 
significant place value and calculate the difference. Since 247 – 128 returns 119 
(positive), write 1 as shown in Fig. 5.10.
Place value 256 128 64 32 16 8 4 2 1

Difference 247 – 256 247 – 128 119 – 64

Bit 0 1 1
	 Table 5.10: Place-value method: Step 3

4.	 Repeat the process until you encounter the least significant, until you subtract the 
previous step difference from the least significant place value as shown in Table 5.11:
256 128 64 32 16 8 4 2 1
247 – 256 247 – 128 119 – 64 55 – 32 23 – 16 7 – 8 7 – 4 3 – 2 1 – 1= 0
 0       1 1 1 1 0 1 1 1 

	 Table 5.11: Place-value method: Step 4

5.	 Read the binary digits from left to right. This gives us 011110111.
	 Thus:  24710 = 0111101112.
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Table 5.11 demonstrates how to use place value method to convert 10710 to  binary 
form. First, write the place values up to 128, and then calculate the difference from left 
to right. If the difference is > =0, insert 1 otherwise insert 0 as shown in Table 5.11.

128 64 32 16 8 4 2 1
107–128 (107–64) (43–32) (11–16) (11–8) (3–4) (3–2) (1–1)
0 1 1 0 1 0 1 1

	 Table 5.11: Place value method

Thus: 10710=11010112

Activity 5.5: Decimal to binary conversion

1. Using the place value method, convert the following to binary number equivalent to:
(i)	 14510  
(ii)	 128010

(iii) 520410

(iv)	 800010
2.  Using the place value and division by base methods convert each of the following 

base 10 numbers to their binary equivalents.
(a)	 1010	 (c)	 4310	 (e)	 36510

(b)	 51210	 (d)	 14310	 (f)	 95410

5.3.2  Decimal to Octal Conversion
To convert a decimal number to octal form, we repeatedly divide the dividend by the 
base value 8 until the quotient is indivisible by 8. The remainders consisting of digits 
between 0 and 7 are read upwards. For example, to convert 58610 to an octal number, 
proceed as follows: 

Thus: 58610 = 11128

8  586
8    73 R  2
8      9 R  1
8      1 R  1
8      0 R  1

(586 ÷ 8 = 73 rem   2   )
(  73 ÷  8 =  9 rem   1   )
(     9 ÷  8 =  1 rem  1   )
(     1 ÷   8 =   0 rem  1   )
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Activity 5.6: Decimal to octal conversion
Using division-remainder method, convert the following decimal numbers to octal form.
(a)	 999	 (b)	 1875	 (c)	 5210	 (d) 	 505
(e)	 1810	 (f)	 3185	 (g)	 1000	 (h)	 750

5.4.3  Decimal to Hexadecimal Convertion
To convert a decimal number to hexadecimal form, repeatedly divide the quotient 
by16 until the quotient is not divisible by the base value. The resulting remainders 
consisting of digits from 0-9, and A-F are read bottom-up. For example, to convert a 
decimal number 896 to hexadecimal form, proceed as follows:
Continue dividing until the quotient is no longer divisible by 16.
Read the remainders from bottom to top.
Thus: 89610 = 38010

Thus: 89610 = 38016

16    896
(896 ÷ 16 = 56 rem  0   )
(  56 ÷  16 =  3 rem   8   )
(     3 ÷  16 =  0 rem  3   )

16      56 R 0
16        3 R 8     
            0 R 3     
Explanation
Divide the number by 16 and write down the quotient and the remainder. Note the 
remainder can be a digit between 0 and F.

Taking another example let us convert a decimal 4056 to hexadecimal form. 
	16    4056

D
F

16      253 R    8
16        15 R  13     
              0 R 15     

Since hexadecimal symbols between 10 and 15 are represented by letters A to F, replace 
15 with F and 13 with D in the remainders.
Thus: 405610 = FD816

Activity 5.7: Decimal to hexadecimal conversion
Using division-by base method, convert the following decimal numbers  to their 
hexadecimal equivalents:
(a)	 107  	 (b)  9850	  (c)   5207   	 (d)  7500  	 (e)  7075
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5.4  Binary to other Base System Conversion
Conversion of a binary number to other  base systems is the reverse procedure to what 
we have covered in the previous section. In this section, we demonstrate how to convert 
binary numbers into decimal (base 10), octal (base 8) and hexadecimal (base 16) form. 

5.4.1  Binary to Decimal Conversion
To convert a binary number to decimal form, proceed as follows:
1.	 Write place values under which you place the bits from the least significant to the 

most significant as shown in Table 5.12. For example, Table 5.12 shows a binary 
number with digits placed under corresponding place values.

2.	 Multiply each bit by corresponding place value e.g starting with most significant 
e.g in case of 101101, multiply the left most bit by 32.

3.	 Sum the partial products to get the decimal number. In our case we add (1 × 28) 
+ (0 × 24) + (0 × 23) + (1 × 22) + (1 × 21) + (1 × 20) 

This gives us:
32 + 0 + 8 + 4 + 0 + 1 = 45
Therefore, 1011012 = 4510

Place value 25 24 23 22 21   20

Binary digits 1 0 1 1 0  1
	 Table 5.12: Binary to decimal conversion

Activity 5.8: Binary to decimal conversion

1.	 Convert 1001002 to decimal equivalent. 
2.	 Convert 10111102 to decimal form.
3.	 What is the decimal equivalence of  111111112?

Assessment Exercise 5.2
Convert the following binary numbers to decimal form:
(a)	  01012		  (b)  11112		  (c)  101011011102

(d) 	  101111112		  (e)  10110012		  (f)   1110001112
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5.4.2  Binary to Octal Conversion
To convert a binary to Octal system group the One’s (1’s) and zero’s(0’s) into sets of 
three bits starting from right to left. The reason for grouping into 3 bits is because the 
maximum octal digit (7) has a maximum of 3 digits as shown in Table 5.13.

Bits 000 001 010 011 100 101 110 111
Octal 0 1 2 3 4 5 6 7

	 Table 5.13: Binary representation of Octal digit
For example, to convert 110100012 to octal format, proceed as follows
1.	 Group the bits to sets of 3 starting from right.
2.	 Write down the octal digit represented by each set of bits as shown in Table 5.14:

Binary digits 011 010 001
Octal digits 3 2 1

	 Table 5.14: Binary to Octal conversion

Thus: = 0110100012  ≡ 3218

Assessment Exercise 5.3
Convert the following binary numbers to Octal form.
(a)	 10100100	 (b)	 10100111	 (c)	 1110010	 	
(d) 	 101110101	 (e)	 10010010	 (f)	 11011111000	
(g)	 1100001011	 (h) 	1011011001	 (i)	 110011100111	
(j) 	 100110110101011

5.4.3  Binary to Hexadecimal Conversion
Similar to the approach used with octal number system, a binary number can be 
converted to hexadenal format by grouping the bits to a set of 4 bits. This is because 
the largest hexadecimal digit i.e. F(15) has 4 bits as shown in Table 5.15: 

Hexadecimal digit                                             Decimal  4-bits
00 00 0000
01 01 0001
02 02 0010
03 03 0011
04 04 0100
05 05 0101
06 06 0110
07 07 0111
08 08 1000
09 09 1001
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Hexadecimal digit                                             Decimal  4-bits
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

	 Table 5.15: Binary representation of hexadecimal digits

For example, to convert 110100012 to hexadecimal form, group the bits into sets of 4 starting 
from right to left as follows: as shown in Table 5.16:

Binary 1101 0001
Hexadecimal D 1

	 Table 5.16: Binary to hexadecimal conversion

	 Thus:  = 1101 00012 = D1

If a binary number does not have an exact set of 4 bits after grouping such as 1100100001, 
proceed as follows:
1.	 Split the number into sets of 4 bits starting from right to left. In our case, we get 

three complete sets and one incomplete one:
	 11  0010  0001
2.	 Because the leftmost set has two bits, add two zeros to it on the left to get: 
      0011  0010  0001
3.	 Using the binary equivalents in Table  5.17, place each the equivalent hexadecimal 

digit under each of the set of bits. 
Binary digits 0011         0010 0001
Hexadecimal   3    2    1 

	 Table 5.17: Grouping bits to represent a hexadecimal digit

      Thus:  00110100012 = 32116 
Activity 5.9: Binary to hexadecimal conversion

1.	 Convert 101111001102  to its hexadecimal equivalent.
2.	 Convert  the binary number 1110110112 to hexadecimal form.
3.	 Find the hexadecimal equivalence of 1101112.
4.	 Convert the binary numbeer 01011102 to hexadecimal form.



Number Systems

97

Assessment Exercise 5.4
1.	 Convert the following hexadecimal numbers to their binary equivalents:

(a)	 10100101012	 (b)	 10010001112	 (c)	 111011111101
(d)	 1001000001112	 (e)	 101110101101	 (f)	 1100101111011111
(g)	 101100001011100	 (h) 	 1010101111001101	 ( i )  	

1010101110000111010

5.5  Octal to Decimal Conversion
To convert octal numbers to decimal form, we use the division-by-base and place 
value methods used on binary numbers.  For example, to convert 5128 to decimal form,  
proceed as follows:
1.	 Write each number under base 8 place value as shown in Table 5.18:

Place value 82 81 80

Octal  digit 5 1 2
	 Table 5.18: Converting octal to decimal form
2.	 From left to right, multiply each digit by its place value as shown below:
	   64 × 5	 =	320
	     8 × 1	 =	 8
	     1 × 2	 = +	2
			      330

	 Thus: 5128= 33010

Assessment Exercise 5.5
Convert the following octal numbers to decimal form.
(a)  778	 (b)	 648	 (c)  1028	 (d) 	 12008	 (e) 	10008

(f)  1738	 (g)  1238	 (h)  7778	 (i) 	 3458	 (j)	 166 8

5.6  Octal to Hexadecimal conversion
Because octal to hexadecimal conversions cannot be done directly, we first convert 
given octal numbers to its decimal or binary equivalent. In the second step we convert 
the decimal or binary number to its hexadecimal equivalent.  
1.	 To start with, we demonstrate how to use the two-stage approach to convert an 

octal number 10028 to hexadecimal:
	 10028 = (1 × 83) + (0 × 82) + (0 × 81) + (2 × 80)
	 =  1 × 512 + 0 × 64 + 0 × 8 + 2 × 1 

=  512 + 0 + 0 + 2
2.	 Convert the decimal number 514 to hexadecimal using division-by-base method.:
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16    514
16       32 R  2
16         2 R  0     
              0 R 2     	

	 Thus, 10028 = 20216
Alternatively, you can convert an octal number to hexadecimal by converting the 
number to binary form as follows:
1.	 Convert each octal digit to a 3-bit binary number as shown in Table 5.19 below:

Octal digits 1 0 0 2
Binary digits 001 000 000 010

	           Table 5.19:Converting octal to binary

2.	 Convert the resulting binary number i.e. 0010000000102 to hexadecimal by 
grouping the bits into four groups starting from right:

3.	 Write down the hexadecimal equivalent of each of the 4-bit grouping as shown 
below:
Binary nibble 0010 0000 0010
Hexadecimal digits 2 0 2

	 Table 5.20:Converting  binary grouping to hexadecimal

	 Therefore, 0010 0000 001002 = 20216

5.7  Hexadecimal to Decimal Conversion
To convert a hexadecimal number to base ten equivalent, proceed as follows:
1.	 First, write the place values starting from the right hand side.
2.	 If a digit is a letter such as an ‘A’ write its decimal equivalent.
3.	 Multiply each hexadecimal digit with its corresponding place value, and then add 

the partial products.
The following example illustrate how to convert 11116  to decimal form:
1.	 Write each digit under its place value as shown in Table 5.21.

Hexadecimal place 
values

162 = 256 161 = 16     160 = 1

Hexadecimal digits    1 1 1
	 Table 5.21: Converting hexadecimal to decimal

2.	 Multiply each hexadecimal digit with corresponding places value and write down 
the partial products (256 × 1) + (16 × 1) + (1 × 1) downwards as follows:
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256 × 1	=	 256
  16 × 1 	=    16
    1 × 1	=   + 1
                  273

3.	 Add the partial products:  256 + 16 + 1 = 273			 
      Thus: 11116 =  27310

	 Taking another example, let us convert  A916 to decimal form:
Place value 161 = 16 160 = 1
Demand  digit 10          9

	 Table 5.22: Converting hexadecimal to decimal      
	 (i)	 Write each bexadecimal digit under its place value.
	 (ii)	 Add the partial products (16 × 10) + (1 × 9)
		  This gives us 160 + 9 = 1690

		  Thus: A916 =  16910

Assessment Exercise 5.6
Convert the following hexadecimal numbers to decimal form:
(a)	 3216	 (b)	 CCD16	 (c) 	EFE16	 (d)	 119 16	 (e)  32816 

(f) ABD16	 (g) 	 10AFFD16	 (h)	 DDFF3416 	 (i) 	 11ABDF16	 (j) 	CDFF3116

5.8  Decimal Fraction to Binary Conversion
In mathematics, a number with integer and fractional parts such as 87.25 is known as a 
real number. In computing, a real number is referred to as floating point number. The 
fractional part has a value that is less than 1 written as 1/x or 0.x. For example, 87.25 
has a fractional part 0.25 that may also be written as 1/4. The weight of a floating point 
number increases from right to left as shown in Table 5.23:

Place value 101 100 • 10–1 10–2 10–3

Decimal digit 8 7 • 5 3 7
Decimal value 80 7 • 0.5 0.03 0.007

	 Table 5.23: Decimal fraction
In computing, the same approach is used to represent fractional binary numbers. For 
example, the fractional binary number 11.110112 may be represented as shown in Table 
5.24.
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Place value 21 20 • 2–1 2–2 2–3 2–4 2–5

Binary digit 1 1 • 1 1 0 1 1
Decimal value 2 1 • 0.5 0.25 0 0.0625 0.03125

	 Table 5.24: Representing floating point binary numbers
For example, to convert a number like 87.25 to binary form, first convert the integer part 
using one of the methods discussed earlier. Then, convert the fractional part as follows:
1.	 Start by multiplying the fractional part by 2 and write the partial product. For 

example, 0.25 × 2 = 0.5.
2.	 Take the fractional part of the previous partial product and multiply it by 2. In 

our case: 0.50 × 2 = 1.000.
3.	 Repeat until the fractional part on the right of decimal point of the partial product 

is 0 or starts recurring. For example, in step 2 above, the fractional part is 000 
hence we stop.

4.	 Read downwards the 0s and 1s on the left of the decimal point of partial products 
as shown below:

	

read this digits

0.25 × 2 = 0.50
0.50 × 2 = 1.00  87.25 = 1010111.01

To convert a floating point decimal number 7.375, proceed as follows:
1.	 Convert the integer part 7 using the division-by 2 or place value method. The 

operation should return 111.
2.	 Convert the fractional part until the part on the right of decimal point is 0 or starts 

recurring:

	

0.375 × 2 = 0.750
0.750 × 2 = 1.500
0.500 × 2 = 1.000  (stop because the part on the right is  zero)

read downwards

3.	 Read the digits on the left of decimal point downwards as shown by the arrow. 
In this case, the digits are 0.011.

4.	 Combine the integer and fractional parts to get: 111+0.011= 111.0112

	 Thus: 7.37510 = 111.0112
In this example, we demonstrate how to convert a decimal number 0.40 that returns a 
recurring binary fraction. We proceed as follows:
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read downwards

0.40 × 2  = 0.80
0.80 × 2  = 1.60
0.60 × 2  = 1.20
1.20 × 2  = 0.40
0.40 × 2 = 0.80  (stop because the fraction starts repeating the first step)
Thus: 0.4010 = 0.01102

Activity 5.10: Decimal fraction to binary conversion

1.	 Convert the decimal number 43.562510 to binary form. Compare your answer 
with 101011.10012.

2.	 Convert the following floating point decimal numbers to binary form:
	 (a)	 0.62510		 (b) 0.45010		  (c) 2.50010

	 (d)	 5.162510	 (e) 7.187510		  (f) 0.35010

5.9  Binary Fraction to Decimal Conversion
To convert a floating point binary number like 11.0112 to decimal form, proceed as 
follows:
1.	 Convert the bits on the left of the decimal point into decimal form and sum-up 

the partial products as follows:
2 × 1 =  2.000
1 × 1 =  1.000

	   
3.00010

Multiply each integer 
part by its place value

Add the two numbers

2.	 Next, convert the bits on the right of the decimal point to decimal form using 
corresponding place values from left to right as shown below:

  0.50 × 0   =  0.000
  0.25 × 1   =  0.250
0.125 × 1   =  0.125
		            0.375

3.	 Finally, add the two decimal parts: 3.00010 + 0.37510 = 3.37510

	 Thus: 11.0112 = 3.37510
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Activity 5.11: Binary fraction to decimal conversion
Convert 11.110112 to decimal form and compare the value you get with 3.8437510.

Assessment Exercise 5.7
1.	 Convert the following binary numbers to decimal form:
	 (a)  0.100112		  (b)  0.00102		  (c)  0.101012

	 (d)  11.01102		  (e)   101.111102	 (f)  100.1102

5.10  Negative Decimal to Binary Conversion
Conversion of negative decimal numbers to binary form is simplified by use of one’s 
complement and two’s complement. One’s complement is a value obtained by inverting 
each bit in a binary number while two’s complement is value obtained by adding 1 bit 
to one’s complement. In this section, we show how to use one’s complement and two’s 
complement to convert a negative decimal number to binary form.  

5.10.1  Ones complement
One’s complement is a temporary step to finding twos complement of a binary number. 
To convert a binary number to ones complement, we invert 0 bits to 1s and vice versa. 
For example, the one’s complement of 10011102 may be expressed as a unary operation 
as follows:
 ~(1001110) = 0110001; where ~ stands for negation.

   Activity 5.12: One’s complement
Represent the following binary numbers to ones complement. In each case, state the 
decimal number represented by the ones complement.
(a)	 11010012	 (b)	 11110102	 (c)	 101011012

(d) 	 10111112	 (e)	 10110012	 (f)	 111001112

5.10.2  Two’s complement
Twos complement is another method used to represent negative numbers in binary 
form. Two’s complement of a number is obtained by getting the one’s complement 
then adding 1 bit. 
For example, to find the  two’s complement of the binary number 10011102, proceed 
as follows:
1.	 Convert 1001110 to one’s complement using unary operator (~) : 
	 ~(1001110) = 0110001;
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2.	 Add 1 bit to one’s complement to get the two’s complement:
	 0110001 + 1 = 0110010
	 Thus: Two’s complement of 1001110 = 0110010.
Taking another example, let us convert the decimal number 45 to binary form and 
express its negative value using twos  complement.  
The problem requires that you pad (insert) 0 bits to the left of the most significant bit 
until the number has 8 bit.  To get the 2s complement, proceed as follows:
1.	 4510 to 8-bit binary form i.e 001011012.
2.	 Convert the binary number to one’s complement as follows: 
	 ~(00101101) = 11010010.
3.	 Add 1 to one’s compliment number as follows:
	 11010010  + 1 = 11010011.

Activity 5.13: One’s and two’s compliment
1.	 In decimal number system, we may represent integers using nine’s complement 

while in binary, we use ones and twos complement. In groups, perform the 
following activities: 
•	 Demonstrate how you would represent nines complement of  decimal number 

like 945. Explain why this complementation is rarely used in computer 
processing logic.

•	 Explain the difference between ones and twos complement and demonstrate 
how you would represent a binary number like 110100102 using twos 
complement. 

2.	 Convert the following negative decimal numbers to binary equivalent using one’s 
and two’s complement:

	 (a)	 -20	  	 (b) -55		 (c) -108		  (d) -586

5.11  Arithmetic Operations on Binary Numbers
Basic arithmetic operators such as addition(+), subtraction(–), multiplication (×), 
division(/) can be used to manipulate binary numbers. In computers, these operations 
are performed inside the central processing unit by arithmetic and logic unit (ALU). 
Because, ALU only performs binary addition, subtraction operation is carried out using 
one’s or two’s complements. To perform  multiplication and division, the ALU shifts 
the bits to the left or right before adding the operands. 

5.11.1  Binary addition 
The four rules applied in binary additions are:
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1. 	 0 + 0 = 0	 	
2. 	 0 + 1= 1 		
3. 	 1 + 0 = 1
4.	 1 + 1 = 0 (write 0, and carry 1 to the next significant bit).

For example, to calculate binary addition 111 + 011, proceed as follows:
1.	 Arrange the bits vertically, and then add them from right to left like in decimal 

numbers as shown below:
		   111
	   +  011	  

2.	 Start the add operation with the least significant digits on the right.
	 12 + 12 = 102 (write 0, and then carry 1)
3.	 Add the carry over digit from the previous step to the second least significant bit 

to get:
	 12 + 12 + 12 = 112 (write 1, and then carry 1)
4.	 Finally, add the most significant bits, plus the carry over from the previous step 

to get:
	 12 + 0 + 12 = 102, (write 10 because to this is is the leftmost)
	 Thus: 1112 + 0112 = 10102

The four steps are summarised in Table 5.25 below:
 1st operand   1 1 1
 2nd operand   0 1 1
 Carry digit   – 1 1
 Partial sum  10 1 0

	 Table 5.25: Steps of binary addition

Activity 5.14: Binary addition
Workout binary addition of 001102 and 011012. Check if 100011 shown in Table 5.26 
is the correct sum. 

1st operand   0 0 1 1 0
2nd operand  0 1 1 0 1
Carry digit   0 1 1 – – 
Sum 1 0 0 1 1

	 Table 5.26: Adding two binary numbers
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Activity 5.15: Binary addition
Find the sum of the following binary numbers:

10110
   1011	  

    +    111
       
To find the sum of the three numbers, first add the two numbers, then add the partial 
sum to the third number as follows:
     Step 1			      Step 2
	 10110			    100001
     + 1011			        +111
    100001			    101000

Assessment Exercise 5.8
Work out  the following binary additions:
1.  1010  + 111  	 2.   1111+1110		 3. 1011+111       		
4.  11101+ 10110	 5.   1000111+ 10010		  6. 1101+101	
7.  111110 +111+101	 8.   100011+10101+ 11011		
9.	  1111111      	 10.    100101		  11.  110010		  12.  1101111
      + 111111	    	         + 11011         	     + 111011	       	     +   110111

5.11.2  Binary subtraction
The four rules applied in binary subtraction are:

1. 	 0 – 0 = 0	  	
2. 	 1 – 0 = 1			 
3. 	 1 – 1 = 0 
4.	 0 – 1 = 1 (borrow 1 from the next more significant bit)

The following example illustrate binary subtraction using direct method:
	    1101
     – 1010
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Starting from right to left, work out binary subtraction as follows:
Step 1	   1 – 0 = 1, 
Step 2	  10 – 1 =1  (borrow 1 from the next significant digit)
Step 3	   0 – 0 = 0,
Step 4	   1 – 1 = 0, 	

Thus:1101– 1010 = 11
Activity 5.16: Binary subtraction
Work out the following the binary difference:
(a)	 100112 – 11002	 (b)	 10110 – 1011
(c)	 101 – 100		  (d)	 10111 – 1111

Assessment Exercise 5.9
Work out the following binary subtractions:
1.	   11 001	 2. 101	  	 3.    11011	 4. 1100       	 5. 111011
      –  1 010	  – 100	         	         – 111	    – 011	       – 110
6.	 100010 – 11		  7.  01101 – 1011		  8.  11111111 – 10101101
9.	 11101101 – 100111	 10.  100000 – 1111

Subtraction using one’s complements
Because a computer does not perform direct subtraction, one’s complement is an 
alternative method used to find the difference of numbers. For example,  to compute 
5-3 using the ones complement, proceed as follows:
1.	 Rewrite the problem as 5 + (–3) to show that  a computer performs subtraction 

by adding 5 to ones complement of the decimal 3.
2.	 Convert the decimal number 3 to its 8-bit number, i.e., 000000112.
3.	 Convert  000000112 to ones complement, i.e., 111111002.
4.	 Convert the first operand i.e 5 from decimal to binary form. This gives us 00000101 

in 8-bits.
5.	 Add the two binary numbers as shown below.
	  00000101
         + 11111100
        (1)00000001

	 NB: We observe that the difference between the two numbers has nine bits instead 
of the original 8. This extra bit is known as the overflow bit.

The 9th bit is an overflow 
hence should be ignored.
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Therefore, the result shows that the difference between 5 and 3 is 00000001; but 
this is not true because the answer should be 00000010.

6.	 To get the correct answer, add the overflow bit back to the difference. 
	 Thus the correct difference is:
	 00000001 + 1 = 00000010.
Activity 5.17: Subtraction using ones compliments
Using 8 bits, find the ones complement of the negative decimal number -1310.
1.	 Convert the absolute value 1310 to an 8-bit binary number, 00001101.
2.	 Negate each bit such that zeros becomes 1’s and ones becomes 0’s to get 

111100102. This represents -13 in binary form.

Subtraction using twos complements
Like in one’s complement, the two’s complement of a number is obtained by negating 
a positive number to negative number. For example to get the difference 5 – 3, using 
the two’s complement, proceed as follows:
1.	 Rewrite the expression as addition of 5 + (–3).
2.	 Convert the absolute value of 3 into 8-bit binary equivalent i.e. 00000011.
4.	 Take the one’s complement of 00000011, that is 11111100.
5.	 Add 1 to the one’s complement i.e. 11111100+1 to get 11111101.
6.	 Convert 5 to binary and add it to two’s complement of 3 as follows:

	

	 00000101
	 +  11111101
	 (1) 00000010

overflow bit

NB: After adding the two numbers, the sum becomes a nine bit number. But because 
a computer can handle only 8 bits, the extra bit on the extreme left (most) significant 
digit is referred to as overflow bit.

7.	 The bit in brackets is an overflow hence it should be ignored. Therefore, the correct 
difference is 00000010.

Activity 5.18: Subtraction using two’s complement
1.	 In terms of memory management, explain why an overflow bit resulting from 

arithmetic operations is always discarded.  

2.	 Using two’s complement, find the difference between the following decimal 
numbers: 

	 (a)	 31-17		  (b) 27-5		
	 (c)	 127-50		 (d) 17-35
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5.11.3  Binary Multiplication
The pen-and-paper method of binary multiplication is quite similar to that used in 
decimal numbers only that the multipliers are 0s and 1s. In binary multiplications, the 
four rules applied from right to left are:
1. 	 0 x 0 = 0	 	
2. 	 1 x 0 = 0			
3. 	 1 x 0 = 0 
4.	 1 x 1 = 1  (no carry over or borrowing)	

For example, to perform binary multiplication 1011 x 101, proceed as follows:
  1 0 1 1   
  × 1 0 1 

1 1 0 1 1 1

Add the partial products we get 1101112

1 0 1 1
 0 0 0 0

+1 0 1 1
	

Explanation
1.	 Multiply the first multiplication with each digit of the second multiplication.
2.	 Shift the partial products to the left.
3.	 Add the partial products as follows:
	 1011 + 0000 + 1011 = 1101112	

Activity 5.19: Binary Multiplication
Perform the following binary multiplications:
(a)	 101101  x  110	

(b)	 101101  x  111	

(c)	 1011.01  x  110.1

5.11.4  Binary Division
Binary division is a shift and subtract operation. In each step, the dividend is grouped 
into bits which are divisible by the divisor, and then subtracted. For example, to perform 
division of 101012  ÷  112 proceed as follows:
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      	   1 1 1 
11    1 0 1 0 1
           1 1 
           1 0 0 
	   1 1 
              0 1 1

1 1
0 0

10101 ÷ 11 = 111

Explanation
1.	 Group the dividend into bits divisible by the divisor starting from left to right, 

and then subtract.
2.	 Write down the quotient and the divisor from the dividend.
3.	 Drop down the next digit and check if the dividend is divisible by the divisor.
4.	 Continue until the resulting dividend is zero or not divisible.

Taking another example of binary division, let us workout 11100110÷110.

1

1

1

1

110

110
100
110
100

11
11

divisor

quotient

won’t go
won’t go

dividend

0

0
0

0

0
0

0
0

1
1

1
1

1
1

1
1

1
0

01

110

remainder

divisible

divisible

Therefore, 11100110÷110 = 100110 remainder 10
Activity 5.20: Binary division
Perform the following binary divisions:
(a) 1011 ÷ 11	         (b) 10011 ÷ 101  	 (c) 1111 ÷  11	   (d) 11  ÷  11
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Assessment Exercise 5.10
1.	 Convert the decimal number –7 to an 8-bit binary number using twos complement.

2.	 Using 16-bit word, find the two’s complement of the following decimal numbers:
	 (a) 	 –3110			   (b) 	 –2810		  (c) 	  –510
3.	 Convert the following expressions to binary form and perform the operations using 

one’s and two’s complement.
(a)  14 – 7		  (b)  28 – 12		  (c)  34 – 33		  (d)  100– 50

Unit Test 5
1.	 Differentiate between the following number systems:

(a)		  Octal and decimal number system.
(b)		 Binary and hexadecimal number systems.

2.	 Convert the following binary numbers to decimal form:
(a)	 1011102	 (b) 1010112		  (c) 01102

3.	 Convert the following decimal numbers to binary form:
	 (a)	 78910		  (b)   57010		  (c)   4210

4.	 Calculate the sum of the following binary expressions:
	 (a) 11102 + 11112 	 (b)  0012 + 1002     	 (c) 11012 + 10112 + 1002

5.	 Using ones and twos complement, workout the following arithmetic:
	 (a)	 11001 – 1101		  (b) 1000 – 101	(c) 100011 – 111
	 (d)	 10101110 – 100110	 (e) 10100110 – 101	 (e) 111011 – 101
6.	 Using one’s and two’s complement, convert the following decimal numbers to 

binary form:
(a)	 – 7510		 (b)  – 8010		  (c)  –10010		

7.	 Determine the value of k in the following binary arithmetic operations:
(a)	 100110 – k = 0010102		
(b)	  k × 11012 = 10000012

8.	 Work out the decimal equivalents of the following binary numbers:
	 (a)	 0.10010	 (b) 101.11	 (c) 11.101	 (d) 0.001
 

9. Find binary equivalents of the following decimal numbers:
	 (a)	 0.35		  (b) 2.50	 (c) 65.20	 (d) 17.125
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Key Unit Competency
By the end of this unit, you should be able to:
1.	 Identify different logic gates, theorems of boolean algebra and 			 

evaluate boolean expressions.
2.	 Utilise laws of boolean algebra on boolean expressions and draw a 			 

simple logic circuit using logic gates.

Unit Outline
•	 Circuits and Logic gates.
•	 Logic gates.
•	 Truth tables
•	 Solving problems using logic circuits
•	 Boolean Algebra.
•	 Sum of Product (SOP) and Product of Sum (POS)

Introduction
As you may be aware, most modern computers are digital and they use binary logic 
to process data which is represented as a series of 0’s and 1’s. In this chapter, we start 
by looking at simple logic circuits that form the fundamental building blocks of data 
processing in computers. We then briefly look at boolean algebra and its connection 
to logic reasoning.  

6.1  Circuits 

Activity 6.1: Switching a torch on and off
Hold a torch. Switch it ON. After a while, switch it OFF. What do you think makes 
the torch to give light when you move the switch to the ON position?

Simplic circuits representing logic gates
Before we look at logic gates, let us try to represent basic logic operations using an 
arrangement of switches that can control the states of a light bulb, either to go ON 
or OFF. The next image shows a normal simple electrical circuit: 

BOOLEAN ALGEBRA AND 
LOGIC GATESUnit 6
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bulb

power source

Fig. 6.1: A simple electrical circuit

In the above figure, when the switch is OPEN (state 0) the bulb is OFF (state 0) too. 
When the switch is closed (state 1) then the bulb comes ON (state 1) too because 
there is flow of electricity in the circuit.

6.1.1  NOT circuit
Study the next figure. You will notice that it has a different arrangement. In this circuit, 
when switch A is open, the bulb comes ON since there is a complete flow of electrical 
current in the circuit. However, when A is closed, the bulb finds itself in between two 
+ve  opposing voltages that are equal to each other so it goes OFF. Therefore, when 
the state of the switch is 1, that of the bulb is at 0.   This is a generally referred to as 
the inversion or NOT operation i.e. it inverts the input from 1 to 0 and vice versa.

A

Fig. 6.2: A NOT circuit
6.1.2  AND circuit
In the next figure, both switch A AND B must be closed (in state 1) before the bulb can 
light. If either or both switches are open, the bulb is also OFF. This circuit represents 
the AND logic where all the switches must be closed in order to light the bulb.
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A                           B

Fig. 6.3: An AND circuit

6.1.3  OR Logic
Figure 6.4 below shows a circuit that represents the OR logic. In this case if either 
switch A OR B is closed, the bulb will light. The bulb will be off only if both switches 
A and B are open at the same time.

Fig. 6.4: An OR gate circuit

6.2  Logic gates
A logic gate is the basic building block of a digital circuit. A digital circuit is one that 
can only be in one of two states at any one time, either ON or OFF. An ON means 
there is high voltage in the circuit while an OFF means zero or no voltage in the 
circuit. It usually has  an input side (with one, two or more inputs) and a single output. 
The input(s) can receive either ON or OFF signals usually represented by 1 or 0 then 
depending on the logic within the gate, the output can either be 1 (one) or 0 (zero). 
Although a single logic gate is simple, many of them are combined together into a 
complex maze to enable complex circuits which process data in the computer at the 
low level depending on the type of signals that are input. 
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Basic logic gates
There are quite a number of different logic gates. However, the basic ones are shown 
in table 6.1 below. Before discussing each one of them, take note of their names and 
drawing. You should be able to identify and/or draw the representation of a particular 
gate.

A
B

A
B

A
B

A
B

A Q

Q

Q

Q

Q

AND gate: the output Q = 1 if and only if A=1 and B =1; otherwise Q = 0

OR gate: the output Q = 1 if one of the inputs A or B = 1

NOT gate: has only one input. It inverts the input. If A = 1 then 

Q = 0 and vice versa

NAND gate: This is an AND gate followed by a NOT gate (inverted 
AND). Q=0 when A = 1 and B = 1.

NOR gate: This is an inverted OR gate. A NOT gate is inserted after 
and OR gate. Q=1 when A=0 and B=0 otherwise Q=0.

XOR gate or Exclusive OR gate. Q=1 if and only if one of the inputs 
is 1 otherwise for all other combinations, Q=0. 

XNOR gate or Exclusive NOR gate. Q=1 if and only if A and B are 
either both 1 or both 0 respectively; for all other combinations, Q=0 . 
Therefore, it is the opposite of the XOR gate.

A
B

Q

A
B

Q

Table 6.1: Logic gates

6.3  Truth tables
A truth table is a mathematical table used in boolean algebra or propositional logic to 
compute the outcome of all possible combinations of input values i.e. it can be used 
to tell whether an expression is valid for all legitimate input values. For example, 
if the inputs A and B can take values 0 and 1; then possible combinations for inputs 
(A,B) are {(0,0), ),(0,1), (1,0) and (1,1)}.
Assuming Q is the output, each logic gate gives different outputs based on the 
combination of these values.   
The truth tables are important because they help us to know the output of each 
individual gate given certain inputs hence we can use them to construct more complex 
logic circuits that can solve real problems. 
Given a particular truth table, it should be possible for you to know which logic gate 
or combination of logic gates produced it. An increase in the number of logic gates 
also expands the truth table.
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Truth tables for various logic gates
Based on the characteristics of individual logic gates as discussed, we can be able to 
investigate the behaviour of each gate when a combination of inputs are used. For 
the sake of simplicity, we look at gates that have only two inputs and one output. We 
accomplish this by constructing truth tables. A truth table arranges all possible input 
combinations and their relevant outputs (Figure 6.5). In this case, A and B represent 
inputs to the logic gate while Q the output.

    

Fig. 6.5: Truth tables

Activity 6.2: ICs and their internal logic gate structure
Groupwork: 
The integrated circuits (ICs) that we have in our electronic devices like radios, 
televisions, mobile phones, tablets and computers look like the pictures in Figure 
6.6 (a). The internal structure of some of such ICs is shown in Figure 6.6(b)(i) and 
(ii). Study them then answer the questions that follow:

(a)                                          (b)
Fig. 6.6: Internal structure of integrated circuits

(i)

(ii)
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1.	 Identify the gates that are found in each of the ICs (i) and (ii) above.
2.	 In IC (i): If a high voltage signal is fed at pin 13 and a low voltage signal at pin 

12, what will be the output at pin 11?
3.	 In IC (ii): If a low voltage signal is at pin 2 and 3, what will be the output at pin 

1?

Activity 6.3: Example of coming up with truth tables
Individual work: 
Study the following logic circuit in Figure below. Construct a truth table for the 
circuit. Do not look at the provided solution first.

Fig. 6.7: Combination of gates 
Solution: Notice that the logic circuit has four inputs. This expands the different input 
combinations to 16 i.e: (A,B,C,D)  = {(0000),(0001),(0010),(0011),(0100),(0101),(0
110),(0111),(1000),(1001),(1010),(1011),(1100),(1101),(1110),(1111)}.
How to work out the solution:
1.	 Start by looking at the inputs A and B. Remember that for an OR gate, if either 

of them or both of them are 1 then the output E will be 1 otherwise it would be 0.
INPUTS OUTPUT 

OF OR
OUTPUT 
OF AND

OUTPUT 
OF NAND

A B C D E F Q

0 0 0 0 0 0 1
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 1
0 1 0 0 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 0 1
0 1 1 1 1 1 0
1 0 0 0 1 0 1
1 0 0 1 1 0 1
1 0 1 0 1 0 1
1 0 1 1 1 1 0
1 1 0 0 1 0 1
1 1 0 1 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 1 0

Table 6.2: Truth table for Figure 6.7
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2.	 Move to the inputs C and D. Remember again that for an AND gate both inputs 
need to be 1 in order for the output F to be 1 otherwise all other combinations 
produce output F = 0.

3.	 Lastly, E and F are inputs to the NAND gate. For Q to be 0 then both E and F 
must be 1 otherwise Q will be 1 in all other combinations. Therefore, the truth 
table for the circuit in Fig. 6.7 is as shown in Table 6.2:

Activity 6.4: Example of logic gate identification from given truth table

Pair Work: 
Given the following truth tables (Table 6.3), draw and name the logic gate or 
combination of logic gates that can produce them. Assume A,B are inputs while Q is 
the output. Try to answer before looking at the solution.

A B Q
0 0 1
0 1 0
1 0 0
1 1 0

Table 6.3: Truth tables

Solutions
(a) 	 Looking at the truth table, the gate has two inputs. The output of the gate resembles 

that one of an OR gate followed by a NOT gate. Hence, this is a NOR gate 
(Figure 6.8).

A

B

Q

Fig. 6.8: NOR gate

6.4  Solving problems using logic circuits
Many problems in mathematics and computer science are solved through two valued 
logic; every statement is either True or False (1 or 0).  In life, problems are solved 
by logically thinking through all possible courses of action and coming up with a 
conclusion of the best way to solve the problem. In coming up with the solution, the 
logician comes up with all valid arguments. Logical statements that describe problems 
can therefore be solved using logical circuits or their equivalent truth tables.
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Activity 6.5: Example of using logic gates to construct a light switch
Think of a situation where you are requested to use the appropropriate logic gate(s) 
to construct a light switch i.e. when the switch is ON (True), the light is ON (True) 
too; but when the switch is OFF (False), position of the light goes OFF (False) too.  

Solution 
This is typically two NOT gates arranged one after the other.
The truth table for the circuit will be as follows:

Table A Table B Table Q
(switch is Off) F T F (Q is Off)
(switch is On) T F T (Q is ON)

B QA

Fig. 6.9: Constructing a light switch

Activity 6.6: Solving real life problems 
Groupwork: 
In groups of four, try to find the solution to this problem. Do not look at the solution 
provided first.

An alarm bell uses three sensors to determine whether it should sound or not. Two 
sensors A and B are inside the room while C is hidden somewhere outside the room. 
If either sensor A or B or both detect motion in the room and C never reported sensing 
motion outside, then the system knows that there is an intruder. An ON signal is sent 
to the bell and the bell rings loudly. Only authorised persons know where sensor C is 
hidden outside the room. To safely enter the room, they have to follow a procedure i.e.  
start by standing in front of C  for the system to sense their presence before entering 
the room. In that case all the sensors A, B and C will have detected the presence of 
an authorised person, therefore, no signal will be sent to the alarm for it to ring. In 
essence, as long as C detects motion, the alarm assumes that the person entering the 
room is not an intruder. Draw a logic circuit that would represent this logic and do 
a truth table for it.

Solution 
We have to start by reasoning based on the logic gates possible inputs and outputs. 
Let us start by assuming the alarm has three inputs A, B and C. This means one of 
the gates has one input - hence it must be a NOT gate! Let us make the following 
assumptions when reasoning about the inputs A, B and C; and output X.
1.	 If a sensor senses motion then there is a 1 signal at the sensor. If there is no 

motion, there is a 0 signal at the sensor.
2.	 If X = 1, the alarm bell rings otherwise it does not ring.
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We start by constructing a truth table for the alarm circuit based on all possible 
combinations of inputs A,B and C and expected output X as shown in Table 6.4 (a) 
below. What we know is that for all instances where C = 1, then X = 0 i.e. when C 
detects motion the alarm bell will not ring even if A and B detect motion.
We also know that where either A or B or both are 1(detect motion) and C = 0 then 
X = 1. Of course where both A and B are 0 then X = 0 too since there is no intruder! 

      
A B C X
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(b)

A B C X
0 0 1 ?
0 0 1 0
0 1 0 ?
0 1 1 0
1 0 0 ?
1 0 1 0
1 1 0 ?
1 1 1 0

(a)

Table 6.4: Truth tables

We can now construct a possible configuration of gates using a block diagram. All 
we know for now is that one of the gates is a NOT gate. Let us conveniently assume 
that the one on which sensor C is attached is our NOT gate. Looking at truth Table 6.4 
(b) we can conclude that the output X of gate G2 depends on the output of the NOT 
gate (E) together with that of  G1 (D). Ideally, we keep remembering that whenever 
E = 0, then X = 0.

 G1

G2

NOT

A
D

B

E
C

X

Fig. 6.10: The NOT gate in the figure

Let us expand the truth table (b) above, based on the knowledge we have to include 
the outputs D and E. We can reason analytically to see whether we can finally find 
out what type of logic gate G1 and G2 are:
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A B C D E X
0 0 0 ? 1 0
0 0 1 ? 0 0
0 1 0 ? 1 1
0 1 1 ? 0 0
1 0 0 ? 1 1
1 0 1 ? 0 0
1 1 0 ? 1 1
1 1 1 ? 0 0

Table 6.5

We take notice that every time either A or B or both are 1 then X = 1 only where E=1. 
Therefore G2 behaves like an AND gate while G1 like an OR gate!! We sketch the 
circuit (Figure 6.11) and verify it using a truth table:

Fig. 6.11: The complete figure

A B C D E X
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 0 0

Table 6.6: Final solution

Problem solved!!

Assessment Exercise 6.1
1.	 Define a logic gate.
2.	 What is a logic circuits truth table?
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3.	 Assuming that a NOT gate has an input 0, what will be its output? 
4.	 Draw a NOT gate. Draw its truth table.
5.	 Assuming that an OR gate has one input at 1 and the other one at 0. 		

What will be its output?
6.	 Draw an OR gate. Draw its truth table.
7.	 What is the difference between an OR gate and a NOR gate.
8.	 Draw a NOR gate. Draw its truth table.
9.	 Differentiate between an AND and NAND gate.
10. 	 Draw a NAND gate and its truth table.
11. 	 Draw an XOR gate and its truth table.
12. 	 Draw an XNOR gate and its truth table.
13.	 Develop truth tables for the following logic circuits (Fig. 6.12):

Fig. 6.12: Combination of logic gates
14.	 A company would like to come up with a logic circuit to monitor what is 

happening in the boiler and get a warning well in advance before the situation 
goes out of control. If the pressure (A), temperature (B) and  humidity (C) are 
low, then a signal is sent to the operator that there is something wrong with the 
system. Similarly, if either pressure or temperature is high and the other low, 
and the humidity is low, a signal will be sent to the operator. Develop a truth 
table for this and draw the equivalent logic circuit.   
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6.5  Boolean algebra
Boolean algebra was invented by George Boole in 1654. It can be used to automate the 
manipulation of objects that control real life processes. This is because computers are 
made up of digital switches that are either ON or OFF. Since  the inputs and outcomes 
of boolean algebra are either 1 or 0, it is a more natural way of representing digital 
information or computing logic. The algebra is  used to explain or solve problems 
related to logic and digital circuits.

6.5.1  Laws of boolean algebra
Boolean operations revolve around boolean operators. A boolean operator takes two 
inputs of either 1 or 0 and output a single value also either 1 or 0. 
There are several laws of boolean algebra. The most common operators that are used 
to manipulate the various logic elements are the OR (+) and the AND(•) e.g.
A + B means A OR B.
A•B means A AND B or mostly just written as AB without the (•) symbol.

1. Commutative law
The commutative law states as follows:

(i)	 A + B = B + A
(ii)	 A•B = B•A

2. Associative law
The associative law states as follows:

(i)	 (A + B) + C = A + (B + C)
(ii)	 (A•B)•C = A•(B•C)

3. Distributive law
The distributive law states as follows:

(i)	 A•(B+C) = A•B + A•C
(ii)	 A + (B•C) = (A+B).(A+C)

4. Identity law
The identity law states as follows:

(i)	 A + A–  = 1
(ii)	 A•A–  = 0

Also:
(iii)	A•B + A•B–    = A
(iv)	 (A+B)•(A+B– ) = A

NB: If A = 1 then A–  = 0. The bar on top signifies a NOT operation on the variable.  
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5. Redundance law
The redundance law states as follows:

(i)	 A + A•B = A
(ii)	 A•(A+B) = A

6. De Morgans law
The De Morgans law:

(i)	 (A+B) = A – . B–

(ii)	 (A•B)  = A – + B–

NB: One of the most common mistakes that learners make is to assume that:
(A•B) =  A•B.     

This is wrong and is not an equality.

7. Boolean constants
(i)	 A•0 = 0 (Null law)		  (iii) A+0 = A			 
(ii)	 A•1 = A (Identity)		  (iv) A+1 = 1

6.5.2  Boolean algebra simplification
Using the above laws, both simple and complicated boolean expressions and logic 
circuits can be simplified and solved. Truth tables for the expressions are used to 
come up with relevant solutions. 
In normal algebra, it is possible to simplify complex expressions like 9x + 3y – 2x 
+ 4y to their simplest forms like 7x + 7y i.e.
	 9x + 3y - 2x + 4y	 =	 9x - 2x + 4y + 3y    (simple rearrangement)
		  =	 7x + 7y
Similarly, the boolean laws stated above can be used to simplify complex boolean 
expressions. It is often the case that a complex boolean equation has to be simplified 
into its simpler exact equivalent. This becomes very useful when one is designing 
circuits and wants to minimise the number of gates needed to build the circuit. There 
are two methods of simplifying boolean expressions:
1.	 Using truth tables.
2.	 Using boolean algebra which entails applying identities and De-Morgans law.
In this book, we shall rely on these laws as stated in section 6.5.1 and on truth tables. 

Activity 6.7: Boolean algebra example
Study the example given below: Do the workings too as presented below.
Simplify the following boolean expression:
F(X,Y,Z) = XYZ + XYZ + XZ
Using the distributive law:
		  = XY(Z+Z) + XZ
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Then using the inverse rule: i.e. 2 + 2–   = 1
		  = XY(1) + XZ
Using the identity rule:
		  = XY + XZ

We can check using truth tables whether the complex form of the expression is 
equivalent to the simplified form. The truth table for the complex form of the equation 
is given below:

X Y Z  XYZ XYZ XZ F(X,Y,Z)
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 1 0 1 0 1
1 1 0 0 0 0 0
1 1 1 0 1 1 1

Table 6.7: Truth table for complex form

Let us look at row 1 to know how we are computing the values:
XYZ	 =	 1•0•0 = 0 (remember for AND all have to be 1 to get a 1) i.e. on row 		

	 1 column 1, X; = on row 1 column 2 Y =0 and on row 1 column 3 Z =  0
XYZ	 = 	1•0•1 = 0 (remember if A = 0 then A = 1)
XY	 = 	0•0 = 0 
F(X,Y,Z) = 0 + 0 + 0 = 0 (for row 1; remember OR gate)
F(X,Y,Z)	 = 0 + 1+ 0 = 1 (for row 3; remember OR gate if one of the 		

		  inputs is 1 the output is 1)
Let us now do the same with the simplified expression:
F(X,Y,Z) = XY + XZ

X Y Z XY XZ F(X,Y,Z)
0 0 0 1.0 = 0 0.0 = 0 0 + 0 = 0
0 0 1 1.0 = 0 0.1 = 0 0 + 0 = 0
0 1 0 1.1 = 1 0.0 = 0 1 + 0 = 1
0 1 1 1.1 = 1 0.1 = 0 1 + 0 = 1
1 0 0 0.0 = 0 1.0 = 0 0 + 0 = 0
1 0 1 0.0 = 0 1.1 = 0 0 + 1 = 1
1 1 0 0.1 = 0 1.0 = 0 0 + 0 = 0
1 1 1 0.1 = 0 1.1 = 0 0 + 1 = 1

Table 6.8: Truth table simplified expression
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NB: If x = 0; x = 1 and vice versa
The F(X,Y,Z) columns tally for both cases so we can conclude that:
F(X,Y,Z) = XYZ + XYZ + XZ = XY + XZ is true.

Activity 6.8 Boolean algebra example
Pair Work: 
Simplify the following expression: Do not look at the solution that is provided below 
first without the permission of the teacher.
	 F(X,Y) = (X + Y)•(X+Y)  
(i)	 At each step of the simplification, state the law that you applied. 

Solution
= XX + XY + YX + YY	 (distributive law)
= XX + XY + YX + 0		 (YY = 0 according to inverse law)
= X + XY + YX		  (XX = X according to identity law)
= X + X(Y +Y)		  (Distributive and Commutative laws)
= X + X(1)			   (Y+Y = 1 according to inverse law)
= X + X 
= X					     (Identity law)

6.6 Sum of Product (SOP) and Product of Sum (POS)
Using truth tables to simplify boolean equations is good and straight forward. 
However, when the logic circuits become more complex with more inputs, truth tables 
become very cumbersome. It is desired therefore to find a better way of representing 
logic in such scenarios. We use a standard form of boolean equations known as the 
canonical form written in SOP or POS format. The SOP and POS equations help 
a person to quickly derive solutions from a given logic table and come up with 
equivalent logic circuits.

6.6.1 Sum of products
We have so far seen that given a boolean value A, we assume that A = 1 and its 
complement is A = 0. Conventionally, we can write a boolean expression which has 
three variables in the following form:
	 F(A,B,C) = ABC + ABC + ABC 
This kind of expression has three groups of the products of the variables A, B and 
C (AND operations) which are summed together (ORed). We therefore call such an 
expression a sum of products (SOP). Each term in the equation is called a minterm 
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e.g. ABC is one of the three minterms. However, note that the domain of three binary 
variables is capable of generating eight different minterms but only three were chosen 
for the above equation. We are going to see how such equations are generated from 
truth tables. 
In the SOP arrangement, the AND operations have precedence over the OR operations. 
That means we first AND the terms in the minterms before we do the OR operations.
When representing minterms, we use a shorthand designation e.g. mx where x = 0, 
1, 2 . . . n. For example, in the above domain where we have three binary variables 
we can generate the following truth table.
	 A B C		  F	 Minterms	 Designation
	 0  0  0		  0	 A B C		  m0

	 0  0  1		  1	 A B C		  m1

	 0  1  0		  0	 A B C		  m2	
	 0  1  1		  0	 A B C		  m3

	 1  0  0		  1	 A B C		  m4

	 1  0  1		  0	 A B C		  m5

	 1  1  0		  0	 A B C		  m6

	 1  1  1		  1	 A B C		  m7

The minterms column represents the values of each variable A, B, C in the truth table 
e.g. if A = 1 then we write it as A; If A = 0 we write it as A in the minterm.
The values in the column F are user defined depending on how you wish your circuit 
to behave i.e. in this case we want our circuit to give a 1 output if and only if:
	 ABC, ABC, ABC (i.e. check the rows where F = 1 as bolded in the table).
To create an equation that represents the required logic, we OR these minterms:
	 F(A,B,C) = ABC + ABC + ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
This equation can be written using the designations as:
	 F   =  m1 + m4 + m7 as long as we have constructed the truth table 		
	 correctly and we know the variable combinations for each mx.
NB: From the Equation 1 above, we can now be able to construct a logic circuit 
that meets the conditions set by the equation. This method of coming up with logic 
circuits is far much more easier. It means we can be able to work with a truth table 
that has an arbitrary number of input variables and come up with simplified boolean 
expressions which can then be used to construct logic circuits that meet the criteria set.

Constructing an equivalent logic circuit
Let us now construct an equivalent logic circuit for Equation 1. We can quickly 
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understand each of the minterm combinations as follows:
1.	 ABC: 	NOT-A   AND  NOT-B   AND C
2.	 ABC:	 A  AND  NOT-B  AND  NOT-C
3.	 ABC:	 A  AND   B  AND  C	
This means if you wish to create the logic circuit, you need three AND gates each 
with three inputs for each of the variables in the minterms. The three outputs of the 
AND gates then become inputs to a single OR gate of three inputs (remember you 
have to OR the minterms). However, notice that we include a NOT gate on any input 
that has a NOT operator in order to fulfill the required criteria (Figure 6.13).

Fig. 6.13:A logic circuit to satisfy Equation 1 - SOP
To verify whether the circuit meets the requirements of Equation 1, we can draw a 
truth table to find out if we get a 1 output only at m1, m4 and m7 as is in Table  . 

Activity 6.9: Verifying the logic circuit in Figure 6.13
Draw the truth table for the logic circuit in Figure 6.13. Discuss the outcome with 
other students in the class as the teacher guides. Does your truth table have 1 outputs 
in column F at m1, m4 and m7?

6.6.2 Product of sums (POS)
The product of sums (POS) takes every combination of variables in the domain 
and performs an OR operation. The OR operations are then ANDed. Each valid 
combination is called a Maxterm and is designated as Mx where x = 1, 2, 3 . . . n. 
The OR operations take precedence over the AND operations here. For example, if 
we have a domain of three binary variables we can generate the following truth table:

F

A
B

C
A

B

C

A

B

C

Q1

Q2

Q3



Boolean Algebra and Logic Gates

128

	 A B C		  F	 Maxterms	 Designation
	 0  0  0		  0	 A+ B+C	 M0

	 0  0  1		  1	 A+B+C	 M1

	 0  1  0		  0	 A+B+C	 M2	
	 0  1  1		  0	 A+B+C	 M3

	 1  0  0		  1	 A+B+C	 M4

	 1  0  1		  0	 A+B+C	 M5

	 1  1  0		  0	 A+B+C	 M6

	 1  1  1		  1	 A+B+C	 M7

.   
In this case, we can pick only those maxterms where the value of our function F = 1.  
The maxterms can then be ANDed together as follows:
	 F(A,B,C) = (A+B+C)•(A+B+C)•(A+B+C) . . . . . . . . . . . . . . . . . . . . . . . . (2)
In order to design a logic circuit that will meet the criteria set by Equation 2, we 
need three OR gates each with three inputs A, B and C. The output of the OR gates 
can then be fed into an AND gate as shown in Figure 6.14.

Fig. 6.14: Logic circuit to satisfy Equation 2 - POS

Activity 6.10: Verifying the logic circuit in Figure 6.14
Draw the truth table for the logic circuit in Figure 6.14. Discuss the outcome with 
other students in the class as the teacher guides. Does your truth table have 1 outputs 
in column F at M1, M4 and M7?

Notice that as you work out the truth table for the logic circuit in Fig 6.14, all the 
three OR gates need to give an output of 1 each i.e. Q1, Q2 and Q3 should all be equal 
to 1 in order for the AND gate to give output of F = 1.

F

A
B
C

A
B
C

A
B
C

Q1

Q2

Q3
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Activity 6.11: Applying SOP and POS example
An air traffic control system controls the landing and taking off of aircrafts at the 
airport. The system uses four input variables to determine whether an aircraft should 
land or take off:
A:	 The direction and speed of the wind must be favourable. 
B:	 The runway lights must be ON and clearly visible.  
C: 	 The runway must be clear and should not be slippery. 
D:	 The pilot must be alert and in good health.
The system can give a green light for landing/take off in the following circumstances:
1. If B, C and D are okey. The pilot can be instructed on direction of landing/takeoff.
2. If all A,B,C,D are okey.
3. For all other combinations, the system will not allow landing/takeoff.
Use the sum of products strategy to come up with a logic circuit that can deliver the 
right decisions to the air controller. 
We start by constructing the truth table:
A	 B	 C	 D	 F	 Minterms	 Maxterms		     
0	 0	 0	 0	 0	 ABCD   m0   	 A+B+C+D   M0			 
0	 0	 0	 1	 0	 ABCD   m1   	 A+B+C+D   M1			 
0	 0	 1	 0	 0	 ABCD   m2   	 A+B+C+D   M2		
0	 0	 1	 1	 0	 ABCD   m3  	 A+B+C+D   M3		
0	 1	 0	 0	 0	 ABCD   m4  	 A+B+C+D   M4		
0	 1	 0	 1	 0	 ABCD   m5   	 A+B+C+D   M5	
0	 1	 1	 0	 0	 ABCD	   m6	 A+B+C+D   M6		
0	 1	 1	 1	 1	 ABCD	   m7	 A+B+C+D   M7		
1	 0	 0	 0	 0	 ABCD	   m8	 A+B+C+D   M8		
1	 0	 0	 1	 0	 ABCD	   m9	 A+B+C+D   M9		
1	 0	 1	 0	 0	 ABCD   m10	 A+B+C+D   M10		
1	 0	 1	 1	 0	 ABCD	   m11	 A+B+C+D   M11		
1	 1	 0	 0	 0	 ABCD   m12	 A+B+C+D   M12	
1	 1	 0	 1	 0	 ABCD   m13	 A+B+C+D   M13	
1	 1	 1	 0	 0	 ABCD   m14	 A+B+C+D   M14	
1	 1	 1	 1 	 1	 ABCD   m15	 A+B+C+D   M15

Notice that a four variable truth table is large. To satisfy the conditions 1,2 and 3 
above, we set m7 and m15 as the only combination of the variables that will give us a 
1 in the system i.e. the greenlight for a plane to land or take off. Following this, we 
can then write the required equations as follows:
SOP:	 F(A,B,C,D) = ABCD + ABCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .(3) 



Boolean Algebra and Logic Gates

130

POS:	 F(A,B,C,D) = (A+B+C+D)•(A+B+C+D) . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Equation 3 summarises the solution using the sum of products while Equation 4 uses 
the product of sums. After coming up with this equations, it is now possible to design 
logic circuits that would satisfy them. We shall develop the logic circuit for the sum 
of products. After that, we allow you to do the product of sums as an activity.
Looking at Equation 3, we need two AND gates each with four inputs and one OR 
gate in order to come up with the equivalent logic circuit. The circuit is shown in 
Figure 6.15.

Fig. 6.15: Solution to Equation 3 - SOP

Activity 6.12: POS logic circuit
Design the logic circuit for Equation 4 above. Share your solution with the rest of 
the class.
  

6.7 NAND and NOR as universal gates	

   Activity 6.13: NAND and NOR gates
Do some research about the NAND and NOR gates. Sketch them. Draw a two variable 
truth table for each one of them. Present your work to the class.
Now look at Figure 6.13, 6.14 and 6.15. What gates have you used to create the logic 
circuits with in all the examples and activities you have accomplished?

We have discussed about different types of logic gates at the beginning of this chapter. 
However, notice that the  AND, NOT and OR gates are the most used when coming 
up with logic circuits. Of course a combination of a NOT and AND gate creates a 
NAND while that of a NOT and OR gates creates a NOR. Now NOR and NAND 
gates have the unique property that any one of them can create and satisfy  any logical 
boolean expression if designed in a proper way. Hence we say that NAND and NOR 
gates are universal gates.

F

A
B
C
D
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Unit Test 6
1.	 Is F(X,Y,Z) = X + YZ equal to F(X,Y,Z) = X + X + YZ? Explain 			 

your answer.
2.	 State the two gates that are known as universal gates and explain your answer.
3.	 Differentiate between the sum of products and product of sums.
4.	 Design a logic circuit for the following expression:
	 (a) F = ABC + ABC.
	 (b) Use product of sums to design the circuit in 4(a)
5.	 True or False. This is a minterm. A + B + C.
6.	 True or False. This is a maxterm. ABC.
7.	 Simplify the following and write a truth table for each:

(i) 	 F(X,Y,Z) = X•Y + Y•Z.
(ii) 	F(X,Y) = (X+Y) •Y(X+Y).
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Key Unit Competency
By the end of the unit you should be able to:
•	 Identify appropriate steps to solve a problem.
•	 Identify an appropriate algorithm for a given problem.
•	 Represent graphically algorithm using flowchart.

Unit Outline
•	 Algorithm concept.
•	 Design of algorithm.
•	 Variables.
•	 Constants.
•	 Operators and expressions.

Introduction
Before developing a program, is it important that a programmer specifies the order 
in which the set of instructions contained in the program are to be executed.  This 
process of defining the step-by-step procedure in which the instructions are to be 
executed is known as algorithm design. This unit starts by defining algorithm concepts 
followed by discussion on tools used to design algorithms. Later, we demonstrate 
how to express algorithm’s logic and concepts using pseudocode and flowcharts. 

7.1  Algorithm Concept
The term algorithm was derived from the name of the 9th century Persian 
mathematician and astronomer Mohammed al-Khwarizmi. The concept has been 
adapted in computer science to refer to a step-by-step procedure that specifies how 
to perform a task or solve a problem. Therefore, a computer program is an algorithm 
implemented using a programming language.
To ensure that an algorithm produces desired solution, a programmer is tasked with 
the following roles: 
1.	 Identify a problem that may be solved using a computer program. 
2.	 Outline the social and technological factors that need to be considered before 

converting the problem into a computer program.

INTRODUCTION TO COMPUTER 
ALGORITHMUnit 7
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3.	 Provide possible solutions to a problem. This may be by means of using off-the-
shelf software or custom-made software. 

7.1.1 Characteristics of Algorithm
A good algorithm is crucial to development of good computer programs. Some of 
the characteristics of good algorithms include:
•	 Correctness: The goal during program design is to produce logical designs. 

The design of a system is correct if the system satisfies user’s requirements. It 
is the responsibility of a programmer to find the best possible design within the 
limitations imposed by the requirements and environment in which the program 
will be used.

• 	 Verifiability: Verifiability is concerned with how easily the correctness of the 
design can be checked. Design should be correct and it should be verified for 
correctness. 

• 	 Completeness: Completeness requires that designs of different system 
components be verified. This requires dry-running of system’s data structures, 
modules, user interfaces, and module integration.

• 	 Traceability: In order for a program to meet user’ needs and expectations, it is 
important that the entire design be traceable from user requirements. 

• 	 Efficiency: Good design results in an efficient program that consumes less 
processor time and memory space.

• 	 Simplicity: Though a program may be complex, its simplicity is one of the most 
important factors that influence its user-friendliness and ease of maintenance.

• 	 Documentation: It is good practice to provide documentation containing details 
of a program algorithms.

7.1.2 Role and Structure of algorithms
The role of algorithms is to support programmers in designing and implementing 
computer programs that solve a problem of importance. For example, consider a 
problem of finding the shortest route to travel between Kigali and Musanze. To solve 
such a problem, algorithm design follows a structured approach outlined below:  
1.	 The programmer first analyses the problem to come up with problem 

specification as shown in Fig. 7.1.  A problem specification defines input, 
processing and output required to solve the problem

2.	 Map the problem specification into an algorithm that defines the logic or 
procedure for solving the problem.

3.	 Once an algorithm has been designed and tested against problem specifications,  
implement it as a program using suitable programming languages. 

4.	 Finally the program is installed on computers or portable devices to solve the 
problem.  
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Fig. 7.1: Role and structure of algorithm

7.2  Design of Algorithms   
Algorithms can be expressed in many ways such as using natural languages, 
pseudocode, and flowcharts used for complex or technical algorithms. To avoid 
ambiguities common in natural language statements, most programmers prefer using 
structured design tools like pseudocode and flowcharts discussed in details later.

7.2.1 Natural language 
The term natural language refers to the ordinary language likes English or Kinyarwanda 
used by human beings to communicate with each other in speech or writing. Because 
an algorithm is a procedure for solving a problem, the natural languages can be used 
to express the steps to be followed to solve a specific problem. For example, the 
following is natural language algorithm for how to make a hot sauce: 
1.	 Before you prepare a hot sauce, make sure you have garlic that is peeled and 

chopped, fresh lime juice, distilled white, vinegar, olive oil, molasses, turmeric 
and salt. 

2.	 Now, combine the pepper, garlic, lime juice, vinegar, mustard, oil, molasses, 
turmeric, and salt in a blender and puree until smooth. Correct the seasoning, 
adding more salt or molasses to taste. 

3.	 Transfer the sauce to a clean bottle. You can serve it right away, but the flavour 
improves if you let it age for a few days. 

The above ‘algorithm’ is a recipe, that is, a step-by-step instructions that takes raw 
ingredients and produces a tasty product – hot sauce. However, one of the limitations 
of such an algorithm is that it tends to be verbose or ambiguous. Furthermore, there 
are different languages in the world which makes it difficult for an algorithm written 
in a particular language to be universal. To avoid ambiguities inherent in natural 
languages, there are language independent tools such as pseudocode and flowcharts 
discussed later in this section.
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Activity 7.1: Natural Language Algorithm
1.	 Consider a daily routine of waking up and going to class. Outline an algorithm 

named “wakeup-to-class” starting with getting out of bed to attending the first 
lesson of the day. If the routine is to be computerized, specify the order in which 
statements are to be executed.

2.	 Identify ingredients of preparing Cassava paste. If the routine is to be 
computerized, specifying the order in which statements are to be executed. 

	 Discuss desirable qualities of recipe in terms of procedure for preparing the 
product. 

3.	 Consider a payroll program used to computer employee’s salary based on basic 
salary, house allowance, commuter and overtime  allowance. The basic salary is 
based on eight hours per pay for five days a week. If monthly net salary is less 
15% pay as you earn (PAYE) and 2.5% medical cover, perform the following 
tasks:
•	 	Using natural language such as English, develop an algorithm for a program 

that calculates gross salary, net and total deductions.

7.2.2  Pseudocode
Pseudocode is a standard method of describing an algorithm without use of any 
specific programming language. The word pseudo means that although pseudocode 
statements resemble real program code, it cannot be executed by a computer. The 
purpose of pseudocode design is to help the programmers formulate their thoughts on 
the organisation and sequence of a computer algorithm without the need of following 
the actual coding syntax.  
Although pseudocode is frequently used, there are no standard for its implementation. 
In most cases, we borrow keywords such as PRINT, WRITE, INPUT, and READ 
from programming languages like FORTRAN and Pascal to express an algorithm as 
a pseudocode. For example, Fig. 7.2 depicts pseudocode that takes radius as input 
to calculate and display area of a circle:

Fig.7.2: Sample pseudocode

BEGIN
SET PI = 3.142
 WRITE “Enter  radius of a circle”:
READ radius
Area = PI*radius2

WRITE Area
END

To avoid ambiguity experienced with the use of natural languages, the following are 
basic rules to be followed when writing pseudocode:
1.	 Pseudocode statements should  be short, clear and readable.
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2.	 The statements must not have more than one meaning i.e. should be unambiguous.
3.	 The pseudocode lines should be clearly outlined and identified clearly.
4.	 A pseudocode should show clearly the start and stop of executable statements
5.	 Input, output and processing statements should be clearly stated, using keywords 

such as PRINT, READ, INPUT etc.

Advantages of using pseudocode 
The following are some the advantages of using pseudocode to express an algorithm:
1. Pseudocode is easy to use and create because it uses English-like statements.
2. Pseudocode requires very little syntax to write.
3. Statements of a Pseudocode can easily be translated to any high-level language.
4. Pseudocode reduces time spent in coding, testing, and modifying a system.
5. Pseudocode implements structured concepts in a better way

Activity 7.2: Expressing Algorithm using pseudocode
Neza deposited FRW 200 000 in a bank at interest rate of 8% per annum for a period 
of five years. At the end of each year, the interest earned is added to the deposit and 
the new amount becomes the deposit for that year. Formulate a pseudocode that 
would be used to track growth of the investment.

7.2.3  Flowcharts 
A flowchart is a diagrammatic or symbolic representation of step-by-step solution to 
a given problem. Flowcharts use standard symbols that help programmers visualize 
input, processing and output operations to be performed by a computer program. 
Unlike natural languages and pseudocode, use of standardised symbols makes the 
flowcharts easier to interpret hence more universally acceptable. Table 7.1 below 
gives a brief description of six standard symbols used to create flowcharts. 

Symbol Name/Meaning Symbol Meaning

Process – Any type of 
internal operation: data 
transformation, data 
movement, etc.

Connector – connects sections 
of the flowchart, so that the 
diagram can maintain a smooth, 
linear flow.

Input/output – input or output 
of data

Terminal – indicates start or end 
of the program or algorithm.

Decis ion  -  evaluates  a 
condition or statement and 
branches depending on 
whether the evaluation is 
true or false.

Flow lines - arrows that indicate 
the direction of the progression 
of the program.

Table 7.1: Flowchart symbols
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The example shown in Fig. 7.3 depicts a flowchart that takes radius as input 
to calculate and display area of a circle.

PI = 3.142
Area = PI*radius2

Start

Read radius

Write Area

Stop

Fig.7.3: Sample Flowchart

Explanation
1.	 The first symbol indicates start of the flowchart.
2.	 The parallelogram (second symbol) indicates the algorithm takes radius as input.
3.	 The rectangle indicates that:

(i)	 Pi is assigned constant 3.142
(ii)	 The area is calculated as Pi × radius2

4.	 The fourth box display Area as output
5.	 The last symbol is the exit.

The following are general rules that may be followed when expressing an algorithm 
using flowchart:
1.	 Be sure to use the right symbol for the right purpose. For examples it is wrong 

to use a terminal symbol for input.
2.	 All the symbols of a flowchart should be connected using arrows (flow lines) 

and not plain lines.
3.	 The direction of flow should be from top to bottom, or sides depending on the 

page layout.
4.	 The start and end of a flowchart must be indicated with (start/stop) terminal  

symbol. 
5.	 Flowchart should have only one entry point at the top and one exit point at the 

bottom or side.
6.	 The decision symbol should have only two exit points for either true or false 

on the sides, or bottom and one side.
7.	 If a flowchart does not fit one page or column, use connectors to indicate breaks 

in the flowchart. 
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Advantages of using flowcharts 
The following are some the advantages of using flowcharts to express an algorithm:
1.	 Flowcharts are better way of communicating the system logic. 
2.	 With a flowchart, problem can be analysed in a more effective way.
3. 	 Graphical representation of design serves as good program documentation.
4. 	 Flowchart makes it easier to debug and maintain a program.

Activity 7.3: Expressing algorithm using flowcharts
1.	 Given that more emphases in algorithm design is on use of flowcharts and 

pseudocodes, differentiate the two algorithm design tools giving advantages of 
each.

2.	 Consider Neza’s case of FRW 200 000 deposit in a bank at interest rate of 8% 
per annum for a period of five years. Revisit the problem in Activity 7.2 and 
design a flowchart  that would be used to keep track of interest earned each year.

Assessment Exercise 7.1
1.	 Distinguish between pseudocode and flowchart. In each case, give advantages 

and disadvantages.
2.	 Jane wanted to design an examination system to be used in her school. Advise her 

on three algorithm design tools she may use.
3.	 Using illustrations, explain at least four standard symbols used in flowchart design.
4.	 In reference to decision flowcharts, differentiate between decision symbol and 

connector. 
5.	 Explain three circumstances that may prompt a programmer to use a pseudocode 

instead of a flowchart. 
6.	 State three advantages of using flowcharts over pseudocode in formulating an 

algorithm.
7.	 Hakizimana intends to automate library services starting with members registration. 

Draw a hierarchical diagram for the overall library system.

7.3  Variables
A variable can be defined as a name also known as identifier that represents data 
values which can change. For example, in a mathematical problem of calculating 
area of a circle, radius can take any value as shown in table 7.2. Therefore, radius 
is an input variable while area is an output variable. 

Symbol Input: radius Process: π x radius (π= 3.142) Area
1 5 Area = 3.142 × 5 × 5 78.55
2 10 Area = 3.142 × 10 × 10 314.20
3 15 Area = 3.142 × 15 × 15 706.95
4 20 Area = 3.142 × 20 × 20 1256.80

Table 7.2: Definition of variables
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If this problem is solved using as a computer program, radius and area variables 
represents memory locations reserved to hold values that change during program 
execution as shown in the table.  

7.3.1 Rules of Naming Variables and Keywords 
The name given to variable is matter of choice by a programmer subject to the 
following rules:
1.	 Choose meaningful variable names that tell the reader of the program what the 

variable represents. For example, use sum instead of just s.
2.	 Each variable in the same algorithm should be identified using a unique name. 

For example you cannot use balls represent input, and balls to represent output
3.	 By convention, variable names should begin with a letter of the alphabet but 

may be followed by numbers. For example, use balls3 instead of 3balls.  
4.	 Avoid using variable names that may conflict with reserved or keywords used 

in most programming languages.
5.	 Variable names made up of two or more words should not have space in between 

the words, instead combine the two words or use an underscore. For example, 
instead of using Basic Salary as variable name, use BasicSalary or Basic_salary.

6.    Uppercase characters are distinct from lowercase characters. 

7.3.2  Declaration of Variables 
Declaration of variable refers to identify and explicitly state input and output variables 
required to solve a problem. For example, suppose you are required to solve a problem 
of finding sum and average of three numbers. To identify and state input and output 
variable from the problem, proceed as follows:
1.	 Express the problem using natural language in order to identify input, processing 

and output requirements as shown below:

	      

Begin
Accept user input for 3 numbers
Calculate sum - add the 3 numbers
Calculate average - divide sum by 3
Display the results sum and average  
End 

2.	 Identify a statement or statements that indicate input is required. In the above 
algorithm, input is implied in the statement “Accept user input for 3 numbers.” 
The statement implies that the user is expected to input numbers on the keyboard. 
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3.	 Represent the input values as variables using symbolic names such as Num1, 
Num2, and Num3.

	 Identify a statement or statements that indicate the algorithm provides output. 
The algorithm indicates output using a statement “Display the reults.” Deeper 
look at the algorithm points the result to calculated sum as average   

4.	 Represent the output values as variables using symbolic names such as Sum, 
Average

5.	 Rewrite the algorithm to indicate the input and output variables as shown below:
 	

	

	

Begin
	 Input: Num1, Num2, Num3, 
	 Output: Sum, Average
	 PRINT Enter three numbers on the keyboard
	 READ Num1, Num2, Num3
	 Sum = Num1+ Num2 + Num3
	 Average = Sum/3
	 PRINT Sum, Average

End 

7.3.3 Data types
In programming, data type determines the type of values that can be stored in a 
variable. Most programming languages supports the following primary data types: 

•	 Integers: Integers are whole numbers, which can either positive or negative 
including zero. For example, 0, 5, -20, and 68 are integers.  

•	 Real Numbers: These are numbers with a fractional part. Normally, the fractional 
part follows a decimal point. For example, 68.67 is a real number.  

•	 Character: Character data, sometimes referred to as “string” data, may consist 
of any digits, letters of the alphabet or symbols which

•	 Boolean: Bolean data type is a type that can only take two values - true or fale. 

In logic, the true value is represented by one (1) while false is represented by zero(0). 
In addition to primary data types, most programming languages support composite 
data types. A composite data type such as array, record and linked list is obtained by 
combining several primary data types. 
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7.3.4 Initialisation of Variables
Once a variable is declared it does not have a defined value, hence it cannot be used 
until it is initialised by assigning it a value. Initialising a variable goes beyond 
declaration to assign an initial value to a variable. For example, in our previous 
algorithm, we can initialise variables Num1, Num2, Num3 with initial values as 
shown below: 

	 Input: Num1= 3, Num2 =5, Num3 =7, 
The statement assigns the values to the variables such that if the algorithm is 
implemented, the initial sum and average before any user input is calculated as:
	 Sum = 3+ 5 + 7; this returns 15
	 Average = 15/3; returns 5
Note that in a real program, if a variable has been declared but not initialised, the 
memory location contains nothing, hence we say it holds a null until the user enters 
values to be assigned to the variable. Fig. 7.4 shows how to initialise variables_A, 
Temporary and Variable_B.

Swap_Two_Numbers   
BEGIN
	 SET Variable_A, Temporary, Variable_B
	 SET variable_A=0; Temporary=0; Variable_B=0
	 PRINT “Please enter Variable_A”
	 READ Variable_A;
	 PRINT “Please enter Variable_B”
	 READ Variable_B
	 Temporary = Variable_A;
	 Variable_A=Variable_B;
	 Variable_B=Temporary;
	 PRINT Variable_A,Variable_B;
END.

Fig. 7.4: Initialising variables

Activity 7.4: Declaring variables
1.	 In mathematics a variable is a symbolic number whose value is unknown yet. 

Identify variables in the following algebraic expressions:
•	 y = mx + c
•	 ax2 + bx + c = 0
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2.	 Study the pseudocode below and identify input and output variables. In each 
case, indicate data type for each variable.   

Fig:7.5: Declaring and initialising variables

7.4  Constants
Unlike a variable which is an identifier for values that can change, a constant is 
a fixed value which cannot be changed. In mathematics and physics, examples of 
constants include pi (π), speed of light, and gravity. For example, referring back to 
the problem of calculating area of a circle discussed earlier, π is a constant whose 
value is 3.142. If implemented as a program, the value of π can never be changed 
during the program execution. 

Activity 7.5: Definition of constants
In mathematics and physics, a constant is a value that does not change. Study 
the algebraic expressions restated below and identify constants:

•	 y = mx + c
•	 ax2 + bx + c = 0

Declaration of Constants
Declaring a constant refers to specifying a symbolic name for a value that cannot 
be changed during program execution.
In algorithm design constants may be declared as string or numeric constants. 
A string constant is a sequence of characters such as “FRW 7200” that cannot 
be manipulated  mathematically while numeric constants such as 7200 can be 
manipulated in a mathematical expressions. For example, to calculate area of a circle, 
we can declare π (pi) as a numeric (constant) as follows:
•	 const double PI= 3.142
The pseudocode of Fig. 7.6 illustrates an algorithm in which TAXRATE and 
DAILY_RATE are declared as numeric constants.

BEGIN
SET L,W, Area, Perimeter =0
WRITE “Enter length and width”
  READ L, W
  Area = L * W
  Perimeter = 2*(L + W)
  WRITE Area
  WRITE Perimeter
END
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Program: Payroll
BEGIN
SET TAXRATE = 0.15;
SET DAILY_RATE = 1500
Enter name of the employee
  Enter days worked;
  GrossPay = DAILY_RATE * days;
  Deduction = TAXRATE *GrossPay
   Net = GrossPay - Deduction
  PRINT Grosspay, Deduction, Net;
END

Fig:7.6. Declaring constants

Activity 7.6: Declaring constants
Using internet, download introduction to C++ tutorials and familialise yourself with 
basic concepts. Using knowledge acquired from the tutorials  explain the full meaning 
of constant declaration  const double PI= 3.142. 
   
7.5 Operators and Expressions
To write correct mathematical expressions, you need to understand operators used 
in programming languages namely: assignment, arithmetic, relational, and logical 
operators. 

7.5.1 Assignment operators 
The assignment operators such as (=) or (:=) causes the operand on the left side of the 
operator to be replaced by the value on the right side.  For example, in the following 
expression, the value of x is replaced by the sum of a and b.

•	 x = a + b

Activity 7.7: Operators and expressions
The order of evaluation of an arithmetic expression follows the rule known as 
BODMAS. In a class discussion, brainstorm on how BODMAS relate to precedence 
rule in evaluating the expressions.
x + y–10 × 13

y

7.5.2 Arithmetic operators
Arithmetic operators are used to evaluate the four basic arithmetic operations: addition 
(+), subtraction (-), division (/) and multiplication (*). In an expression such as 3+2, 
addition operator adds the two operands to return a value, hence it is referred to as a 
binary operator.  
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7.5.3 Relational operators
Relational operators are used in boolean expressions that compares numeric or string 
constants and returns a true or false. Such operators include: greater than (>), less 
than (<), equal to ( =), less than or equal to (<=), greater than or equal to (>=),  and 
not equal to (< >). Relational operators are binary operators because they act on two 
operands e.g. 5>3 that returns true.

7.5.4 Logical operators
Logical operators derived from Boolean algebra are used on compound expressions 
or conditions to return true or false. The three logical operators used in most 
programming languages are AND, OR and NOT. Unlike AND and OR which are 
binary operators, NOT is a unary like tild (~) in mathematics. This means that it 
negates the operand on its right side; e.g. NOT true returns false. 

Activity 7.8: Logical operators
Consider a task of designing an automated alarm system that has the logic: “If the 
door alarm sounds AND it is after six p.m. AND it is NOT a holiday, OR if it 
is a weekend, then call the police.” Write a statement that would implement the 
alarm logic
    

7.5.5 Bitwise operators
Bitwise operators are similar to logical operators only that they are specifically used 
to manipulate binary digits. The main Bitwise operators are AND, inclusive OR, 
exclusive OR (XOR), NOT (~), binary left shift (<<), and binary right shift (>>). 

Activity 7.9: Bitwise operators
1.	 Using sample expressions, distinguish between logical operators and bitwise 

operators.
2.	 Study the truth table shown on Table 7.3 below and indicate values returned by 

evaluating the expressions.  Note that 1 is a binary value representing true and 
0 represents false.

Expressions Value (1 or 0)

1 and 1
1 and 0
0 and 0
1 or 1
1 or 0
0 or 0

Table 7.3: Truth table
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3.	 Design an algorithm for a program that would evaluate the following compound 
statements: 
•	 If (x = 30) AND (gender = “male”).
•	 IF (x = 20) OR (y <10). 
•	 If (NOT false) OR (size > 5.4).

7.5.6 Precedence of operators
Precedence of operators refers to established rule that assigns priority of each 
operator used in an expression. For example, when writing complex expressions in 
mathematics, we use precedence rule known as BODMAS that stands for Brackets, 
Off, Division, Multiplication, Addition, and Subtraction. BODMAS rule means 
that the highest priority is assigned to Bracket, with the lowest priority being assigned 
to Subtraction. For example, in the expression below, unless we apply BODMAS 
rule, the answer could be 6.5! 
           x = 5 + 8 ÷ 2
	 x = (5 + 8) ÷ 2 (if evaluated from left to right, we get 6.5)
	 x = 5 + (8 ÷ 2) (with BODMAS rule the result is 9)

Like BODMAS in mathematics, we use precedence rule in algorithms to assign 
priority to each of the arithmetic, relational and logical operators. Table 7.4 shows 
the order of precedence in each of the four categories from the highest to the lowest. 

Arithmetic Relational Bitwise Logical

1 * Multiplication < Less than	 NOT (~) NOT

2 / Division <= Less or equal to AND AND

3 % Modulus > Greater than XOR OR

4 + Addition >= Greater or equal to OR

5 - Subtraction =

Table:7.4: Order of precedence
NB: In case an expression has multiplication and division such as 8*3/4, evaluation 
is carries out from left to right. 

7.6  Read and Write functions
Functions are “self-contained” group of statements that accomplish a specific task. 
In algorithms, the read function gets data from input devices like keyboard while 
write functions prints output on devices such as screen. 

Highest 
precedence

Lowest 
precedence
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7.6.1 Read functions
To represent read functions in an algorithm, we use keywords like READ, INPUT, and 
GET. For example, the following statements demonstrate how to use read functions 
to get radius as input from keyword: 

	 READ radius;  
	 INPUT radius; 
	 GET radius;

Good practice in algorithm design requires the READ functions to be in uppercase 
while values to be read also known as parameters to be in lowercase. For clarity, 
if a function is to read several paramenters, parenthesis may be used to enclose the 
parameters as shown below:

	 READ (length, width) 
	 INPUT (length, width);
	 GET (length, width);

7.6.2 Write Functions
Like in read operations, we use keywords like WRITE, DISPLAY, and SHOW to 
represent functions that display information on the screen. For example, the following 
statements demonstrate how to display area on the screen: 

	 WRITE area;  
	 DISPLAY area; 
	 SHOW area;

For clarity, if a write function is to display several values, parenthesis may be used 
to enclose the parameters as shown below:

	 WRITE (area, perimeter) 
	 DISPLAY (area, perimeter);
	 SHOW (area, perimeter);

Activity 7.10: Read and write functions
1.	 Using read and write functions, formulate an algorithm that computes roots of 

x from the following quadratic expressions = ax2 + bx + c.  
2.	 Sebahive took a loan of FRW 400,000 from a local bank at interest rate of 12% 

annually. Assuming the loan should be paid back in 4 years time, use read and 
write functions in a pseudocode that computes monthly loan repayment. 
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Assessment Exercise 7.2
1.	 Design an algorithm for a program that would be used to solve a quadratic equation: 

y = ax2 + bx + c.

2.	 Design an algorithm for a program that would be used to compare three numbers 
x, y and z, and then display the least among the three.

3.	 Differentiate between read function and write functions as used in algorithms.

4.	 Jere deposited FRW 200,000 in his savings account. The amount deposited earns 
a 3% annual interest. Design an algorithm that would be used to calculate interest 
after n years.

Unit Test 7
1.	 Explain the following algorithm concepts:

(a)	 Precedence rule
(b)	 Variables

2.	 To get estimate the rate of fuel consumption, Lemba needs to calculate  kilometres 
per litre consumed by his car. Design an algorithm for a program that lets Lemba:
(a)	 Enter current fuel reading and after refilling.
(b)	 Enter kilometres and fuel reading after driving for at least 30 km on a highway. 

The computer should then calculate and prints estimated consumption in km/
litre.

3.	 Draw a flowchart that prompts for five numbers, and then calculates sum and 
average. The computer should display total sum and average of the five numbers.

4.	 Draw a flowchart that reads temperature for each day in a week, in celsius, converts 
the celsius into fahrenheit and then calculate the average weekly temperatures. 
The algorithm should display weekly average temperature in degrees fahrenheit.

5.	 Nyframahoro deposited FRW 2000 in a Micro-finance company at an interest rate 
of  20% per annum. At the end of each year, the interest earned is added to the 
deposit and the new amount becomes the deposit for that year. Draw a flowchart 
that would track the growth of deposits over a period of seven years.
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Key Unit Competency
By the end of the unit, you should be able to:
•	 Derive logic in algorithm which include control statements.
•	 Handle one dimensional array in algorithm.

Unit Outline
•	 Conditional logic.
•	 Control structures.
•	 One-dimensional array.

Introduction
Control structures are statements or symbols used in algorithms to represent the 
logical flow or order in which program statements are to be executed. In this unit we 
will begin by describing conditional logic that is fundamental to control structures. 
Later, we demonstrate how three control structures namely sequence, decision and 
iteration are used in algorithms. Before closing the unit, we discuss one of the 
elementary data structures known as one-dimensional array.

8.1  Conditional logic
In everyday’s life people like to use statements like If I had the time and the money 
I would go buy a tablet and learn how to use it. Such a statement is a conditional 
logic implying that certain conditions must be satisfied for an action to be taken. 
Therefore, a conditional logic is a proposition formed by combining two or more 
facts using the words like if, case and then. The conditions in the if statement are 
combined using logical links like: and, or and not.

8.1.1  Simple conditional logic
Simple conditional logical requires only one fact for an action to be taken, hence 
statements do not require use of logical links like and, or and not. For example, the 
following statement is a simple conditional logic because it only requires participation 
in class for the teacher to take action:

CONTROL STRUCTURES AND 
ONE DIMENSION ARRAYUnit 8
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The teacher promises that if “you participate in class”, 
then “you will get five extra  points” 

•	 Fact: you participate in class – can be true/false
•	 Action: you will get extra five points - can be true/false

8.1.2  Compound conditional logic 
Compound conditional logic make use of logical links to combine several facts for 
an action to be taken. For example, the following statement requires two conditions 
to be fulfilled for the teacher to take action:
•	 The teach promises that if “you are always punctual”” and “participates in 

class” then “you will get five extra points” 
This statement implies that the teacher can only award five extra points (true) if a 
student is always punctual (true) and participates in class (true). In Mathematics, 
facts and actions can be represented using symbols in a table as shown in Table 8.1. 

p (Fact1) q (Fact2) p AND q

T T T
T F F
F T F
F F F

Table 8.1: Compound AND conditional logic
Conditions linked with AND logic requires an action to be taken only when all conditions 
are true. For example, the third column in Table 8.1 above shows that the two conditions 
must be true (T) for the teacher to award a student five extra points. The table also 
shows four other possible outcomes depending on the true/false value of p and q. 

Conditions linked with an OR logic lead to an action when either one or both are true. 
For example, the teacher may decide to awarded five points if a student is punctual or 
participates in class. This statement can be represented using OR logic in a table as 
shown in Table 8.2.

p (Fact1) q (Fact1) p OR q
T T T
T F 	 T
F T T
F F F

Table 8.2: Compound OR conditional logic
In algorithm design, there are many occasions conditional logic is required when 
alternative actions are to be considered. In the next sections on control structures, we 
demonstrate how to express conditional logic using relational and logical operators. 
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For example the flowchart extract of Fig. 8.1 and equivalent pseudocode demonstrates 
use of conditional logic to check if a person is an adult.

Print “Youth”

Age>18?

Print “Adult”false

true
IF Age > 18 THEN
   PRINT “Adult “
 ELSE
    PRINT “Youth “
END IF

Fig. 8.1: Sample IF conditional logic

8.2  Control Structures
Control structures (statements) refer to a conditional logic that determines the flow 
of an algorithm or execution of a program. The three types of control structures 
discussed in this unit are sequence, selection and looping.

8.2.1 Sequence Control Structure
Sequence control structure refers to logical flow of statement one after another in the 
order in which they are written. This means that algorithms designed using sequence 
control do not depend on evaluation of a conditional logic. The pseudocode shown in 
Fig. 8.2 illustrates sequence control in which two numbers are first entered before sum 
and product are calculated and displayed on the screen.

BEGIN
SET variables sum, product, number1, number2 
PRINT “Enter two numbers”
READ number1, number2
sum = number1 + number2
product = number1 * number2
PRINT sum, product
END

Begin

Sequential 
flow of 
control

End

Fig. 8.2: Sequence control structure

Activity 8.1: Sequential control structure

1.	 Formulate an algorithm  that would prompt a user to enter the length and width 
of a rectangle. The program then calculates and displays the area and perimeter. 
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2.	 Study the flowchart of Fig. 8.3 below and explain why the algorithm represents 
a sequence control structure.

Product = x * y

Start

Read x, y

 Write Product

Stop

Fig. 8.3: Flowchart for sequential control

8.2.2  Selection Control Structure
Selection control structure also known as decision control statement is a conditional 
logic used when there is one or more alternatives to choose from. If a selection 
statement provides several alternatives to choose from, we refer to such as  a statement 
as case selection.  The four types of selection control structure are if ...then, if...else, 
nested if and switch/case.

8.2.2.1  If …then selection
The if…then is a conditional logic used to test whether the condition is true before 
an action is taken. If the condition is true, the statement in the body of if statement 
is executed; otherwise nothing happens if false. The general syntax of if..then is 
expressed as follows:

		  If condition is true then
		  Do Task-A
For example, in the following statement, if...then condition tests whether mark is 80 
and above. If the condition is true, the statement distinction is displayed on but this 
case, if the condition is false, nothing happens:

If mark >= 80 then
   PRINT “distinction”

One important application of if…then selection is to validate user input. For example, 
the Fig. 8.4 shows a flowchart with if … then selection used to test whether a number 
entered is less than zero. If the number is negative, the algorithm displays invalid mark.  
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Fig. 8.4: Sample IF..THEN control

Invalid mark

mark<0?

Yes

No

mark

start

stop

Explanation
1.	 Once the user enters a mark, the algorithms checks whether the input is less than 

zero.
2.	 If true then statement ‘invalid mark’ is displayed, otherwise nothing happens.

8.2.2.2  If ... else selection
If … else selection is suitable when there are two available options. In general the 
format of if... else statement can be represented as:

IF <boolean expression>THEN
Statement 1
ELSE
Statement 2
END IF

Explanation
The Boolean expression within If....then statement is first evaluated. If true, statement 
1 is evaluated otherwise statement 2 is evaluated if the condition returns false. For 
example, Fig. 8.5 (a) and (b) shows the flowchart and pseudocode for  checking 
voters eligibility depending on age. If a person is 18 years and above, the  expression 
returns true and displays “Vote” else if a person is below the set age limit, the program 
displays “Do”.  
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Vote

is
Age > =18?

Don’t VoteYes

Stop

No

Read Age

Start

Fig. 8.5(a): If..Else Flowchart

BEGIN
USE VARIABLE: AGE AS 
INTEGER
  WRITE “Enter person’s age”
  READ Age
  IF Age > =18
    WRITE “Vote”
   ELSE
     WRITE “Don’t Vote”
 END

Fig. 8.5(b): If..Else selection pseudocode 

Activity 8.2: If ... else selection
1.	 Draw a flowchart for a program that reads two numbers and displays the larger 

of the two numbers. The algorithm should use IF...ELSE selection to compare 
the two numbers. 

2.	 Study the flowchart shown in Figure 8.6 below and state the value of Z if the 
following values of x and y are entered by the user:
(a)	 X = 20, Y = 10	
(b)	 X = 19, Y = 20

Fig.8.6: Flowchart for modifying z

Set z = 100

Start

Read x, y

Stop

x>y?

Write z

yes

no

z= z + 50

8.2.2.3 Nested IF
Nested IF selection is used where several options have to be considered to make a 
selection. The general format of the Nested IF is:
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IF <boolean expression>THEN
	   statement 1
	 ELSE IF <boolean expression>THEN
		  statement 2
	 ELSE IF <boolean expression>THEN
		  statement 3
ELSE 
statement 4
END IF

Explanation
1.	 The statement first evaluates if the condition is true.  	If true, the statement is 

executed.
2.	 If the first condition is false, the else if statement is evaluated. This continues 

until the else statement is encountered.
Note that in nested if selection, the last statement must be within else that executes 
the statement if the boolean expression returns false. When drawing a flowchart, if 
there are n options to select from, the number of diamonds representing IF should be 
n-1. For example, Fig. 8.7 shows an algorithm for a program that takes current date 
(Todate) and date of birth. Depending on the current date, the algorithm computes 
age used to classify the people into categories shown in table on top-right side.

Cat=Grown up

age<3?age<1?

Cat=PreUnit

Stop

no

yes

age<6? age<13?

Cat=PrimarykidCat=Kid Cat=Preschkid

Age = ToDate – DoB

DoB, ToDate

Start

Cat

Fig. 8.7: Sample nested IF..ELSE selection

 Age (years)	 Category	

1 - 2 	   	 Pre-school Kid
3 - 5                 	 Pre-unit Kid	
6 - 12 	        	 Primary Kid	
Above 12        	 Grown Up

Below 1		 Kid	          	
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Explanation
1.	 The user first enters a person’s date of birth (DoB) and the current date (ToDate) 

that are used to calculate  age.  
2.	 Based on age, the algorithm uses nested if to assign the person to one of the 

categories (cat) defined in the table on the right. For example, if age <1 as 
indicated in the first decision symbol, cat is assigned to kid using the statement:

	 cat = kid; 
3.	 The algorithm displays category of the person in the output symbol. For example, 

if cat is assigned to kid, the output symbol displays Grown up.

Activity 8.3: Nested If selection  
Fig. 8.8 shows an algorithm for a program that would be used to accept three 
numbers A, B and C, compare them  and display the largest of the three.	 C o n v e r t 
the flowchart to a pseudocode. 

Fig. 8.8: Nested IF for finding the largest number

yes A>C?B>C?

Largest=ALargest=CLargest=B

Largest

A, B, C

no yes

nono

yes A>B?

Stop

Start

8.2.2.4  Switch/Case selection
An alternative to nested if selection is use of switch/case selection control. The 
following algorithm represents the general syntax of a switch statement.

SWITCH(expression)
CASE expression 1:
statement 1
statement 2
 .
 .
CASE expression n:
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 statement(s)
DEFAULT:
 statement(s);
END SWITCH

For example, the pseudocode of Fig. 8.9 shows a sample selection of menu items in 
a hotel implemented using switch selection.

BEGIN
use variable number AS Integer
PRINT “Enter menu item”
READ number;
SWITCH(number)
 CASE of 1:
 PRINT “My choice is Milk”
 CASE of 2:
 PRINT “My choice is Tea”
 CASE of 3:
 PRINT “My choice is Coffee”
DEFAULT:
 PRINT “Your choice is not valid”
END SWITCH
END

Fig. 8.9: Sample Switch...Case Selection

Explanation
1.	 The procedure accepts a number as input. 
2.	 The switch statement checks if the input is number 1, 2 or 3. For example, if 

number is 3, it displays “My choice is coffee”.
3.	 If the number entered does not fall within the three numbers, the DEFAULT 

statement is executed.
To demonstrate further use of switch/case selection, Fig. 8.10 shows a flowchart used 
to determine discounted price of products depending on the item code. For example, 
if the product code is B123, its prefix B means that it belongs to category B. Note 
that each category is used to determine the rate used to discount  the cost of an item. 
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no

yes

rate=0.00

yes

rate=0.05

Stop

discprice = price *rate

Itemcode,  discprice, rate

no

yes yes

rate=0.01rate=0.02 rate=0.03

Assign category

item_code, price

Start

nono 
Category A? Category   B? Category  C? Category D?

Fig. 8.10: Sample switch/case flowchart

Activity 8.4: Switch/case selection
A school intends to develop a computer program that automates processing of 
computer science exam grades as follows:

•	 70 – 100 	 A
•	 60 – 69 	 B
•	 50 – 59 	 C
•	 40 – 49 	 D
•	 Below 40 	 E

Design a flowchart  that expresses selection logic for a program that assigns grades 
as per grading system above. 	  

8.2.3 Looping control Structure
The looping control structure, also referred to as iteration or repetition, causes the 
program to repeatedly execute statements within the loop until the condition is false. 
For example, consider repetitive task that occurs during shopping represented by the 
following natural language algorithm:
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WHILE shopping list is not empty DO
pick an item and put in a shopping cart.
Continue picking until the list is exhausted.

END WHILE
Proceed to checkout counter to make payment.

This algorithm describes a common practice of buying items in a retail outlet. The 
statements under the WHILE keyword indicate that a buyer continues picking items 
until the shopping list is exhausted. The keyword END WHILE shows that it is after 
picking all the items from the shopping list the buyer stops and proceeds to make 
payment at checkout counter.”

8.2.3.1 FOR Loop 
For loop is a looping statement used to evaluate a condition before executing statement 
in the body of the loop. The for loop can be represented using the following general 
syntax: 
FOR variable = lowerlimit TO upperlimit DO
	 statements;
END FOR
For example, the pseudocode of Fig. 8.11 shows how to use the FOR loop to design 
a program that displays the first 20 positive integers and their sum. Note that, as long 
as the lower limit is less than the upper limit, the number is added to sum and the 
count incremented by 1 until the lower limit is equal to or greater than the upper limit.

Explanation
1.	 The algorithm set initializes sum with zero.
2.	 The for loop sets the initial count to zero and maximum to 19 i.e number < 20.
3.	 In every loop the premium sum is updated by adding a number.
4.	 The for loop is existed once the maximum count is reached.	

BEGIN
SET Sum = 0
FOR number = 0 To number < 20 Do
     Sum = Sum + number
   END FOR	  
PRINT Sum
END

Fig. 8.11: For loop-sum of 20 natural numbers. 
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Activity 8.5: For loop
A class of ten students took a quiz in computer science. Using the FOR loop, formulate 
an algorithm that would be used to compute cumulative total and mean score of the class.

8.2.3.2 WHILE Loop 
Like the FOR loop, WHILE loop first evaluates the condition before executing the 
body of the loop. Therefore, While loop executes statements zero or more times. The 
general syntax of a while loop can be expressed using the following pseudocode on 
the left or flowchart of Fig. 8.12 on the right.

WHILE < boolean expression> DO                  
condition? 

true

false

statements

Fig. 8.12: While..loop

	 statements
END WHILE

For example, in a commercial bank, a customer may be allowed to withdraw money 
through the ATM if the minimum balance is over RWF500 otherwise a message 
“Insufficient funds” is displayed. Assuming for each transaction the minimum 
withdrawable amount is 100, the control logic shown in Fig. 8.13 would be used to 
enforce the business rule. 

Fig. 8.13: Looping and selection-withdrawal balance

bal>500?

bal= bal - amount

Write Receipt

Read amount

Start

amount%100=0?Try again

Insufficient funds

Stop

no

yes

amount must be divisible by 100no

yes

Explanation
1.	 The algorithm shows that the user first enters withdrawal amount. For example, 

if the user enters 2000, the conditional logic “if amount % 100 = 0” checks 
whether dividing the amount by 100 returns 0 as the remainder is 0. If the 
expression returns false, the algorithm displays a message “Try again” before 
prompting the user to re-enter amount. If true, the algorithm proceeds to check 
whether the current balance (bal) is above 500. 
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2.	 If the condition bal>500 returns false, the algorithm prints a message “Insufficient 

funds” before exit. 
3.	 If the current balance is above 500, the algorithm proceed to the next step of 

debiting the account using the statement:
	 bal = bal - amount
4.	 Finally, the algorithm displays withdrawal receipt on the screen.

Activity 8.6: While loop
Formulate an algorithm for automatically counting the number of times an electric 
fence alarm beeps. Once the number of beeps reaches 20, the system triggers a remote 
siren that alerts the security firm to send emergency response team. The looping 
control logic for counting beeps should represented designed with a while loop.

To further demonstrate application of while loop, let’s look a problem of determining 
whether a calendar year such as 2016 is a leap year. Fig. 8.14 shows a flowchart for 
a program that would be used to receive a valid year, verify whether it is a leap year, 
and then print the result such as year 2016 is a leap year. Note that a leap year has 
366 days and it is divisible by 4 except for years that are exactly divisible by 100. 
Years such as 2000 that are divisible by 100 and 400 are leap years.  

Fig. 8.14: Selection and looping-leap year algorithm

Year%100=0? yes

Rem = Leap

Stop

Rem = NotLeap
Rem = Leap

Write Rem

no yes

nono

yes
Year%4=0? Year%400=0?

Read Year

Start

Year =9999?
yes

no

Exit?no

yes
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Explanation
1.	 The user enters a valid year or 9999 to quit the algorithm. For example, if the 

user enters 2016, “if Year%100 = 0” checks whether the remainder is 0 after 
dividing the by 100.

2.	 If the expression returns true, year% 400 is evaluated otherwise if false, year%4 is 
evaluated. In both cases, Rem (remark) is assigned to Leap using the statement:

	 Rem = Leap; 
3.	 If after dividing by 100 returns a non-zero value, Rem is assigned to NotLeap 

using the statement:
	 Rem = NotLeap; 
4.	 The algorithm displays Leap or NotLeap remark in the output symbol depending 

on the result of the assignment statement.

8.2.3.3	 Repeat ...Until Loop
Repeat … Until control is similar to the  while loop except that the statement is 
executed at least once. For example, Fig. 8.15 shows a pseudocode used to convert 
an integer number in base 10 to binary numbers represented by zeros and ones.  

BEGIN

	 SET Number, Quotient, Remainder

	 SET Number=0, Quotient=0, Remainder=0

	 PRINT “Please enter a decimal number”

	 READ Number;

	 REPEAT 

Quotient = Number Div 2
Remainder = Number Mod 2
PRINT Remainder
Number = Quotient

	 UNTIL Number=0

	 PRINT “Read remainder upwards”;

END.

Fig. 8.15: Repeat.. for converting
Explanation
1.	 The pseudocode starts with declaration of three variables that are initialised to 

zero.
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2.	 Once the user enters a number like 25, the algorithm uses reat ... until loop to 

repeatedly divide the number by 2 for example, 25 DIV2  returns 12.
3.	 The statement Number Mode 2 returns the remainder of integer division. For 

example, 25 Mod2 returns 1.

Activity 8.7: Repeat until loop
1.	 Revisit the algorithm in Activity 8.6 and represent it using REPEAT.. UNTIL 

loop.
2.	 The flowchart of Fig 8.16 represents a program that would be used to compute 

sum of 50 integers. Study the algorithm and express loop construct using 
pseudocode. 

	

8.2.4	 Finite and Infinite Loops
A finite loop repeatedly executes a set of instructions until a specific condition is met. 
On the other hand, an infinite loop (endless loop) continue looping indefinitely due 
to a condition that is never met. To force such a loop to terminate, you may have to 
forcefully shut down the computer or close a program by pressing a combination of 
keys such as Ctrl+C. For example, Fig. 8.17 shows an infinite loop in which the value 
of  x is reset to 1 hence the condition x<5 holds forever.

  SET x = 0
  WHILE x < 5 DO
     x = 1
     x =  x + 1	  
     PRINT x
  END WHILE

Fig. 8.17: Infinite loop

Set n = 0
Set sum = 0

Start

Stop

n<=50?

n = n + 1
sum= sum + n

Write Sum

yes

no

Fig. 8.16: Repeat..Until for sum of fifty numbers.
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Explanation 
1.	 This section of an algorithm starts by initialising x to 0.
2.	 Once the algorithm enters the while loop the value of x is replaced with 1 then 

x + 1. This means what the value of x before printing is 2.
3.	 The algorithm prints X and then checks the condition to compare x (i.e. 2) with 

5. Because 2<5, the algorithm enters the loop again. The value of x is reset to 1 
then incremented to 2 and the looping continues.

Activity 8.8: Finite and infinite loop
A college offers a course that prepares students for a motor vehicle driving test. In the 
previous month, twenty of the students who completed this course took both theory 
and practical tests. To keep record of test results, you have been asked to develop an 
algorithm using  the following  specifications:
•	 Prompt the user to enter driving test results for each student with a  comment 

pass or fail.
•	 The algorithm displays a summary of the test results indicating the number of 

students who passed and the number who failed.
•	 If more than 85% of the students passed the test, the program displays a  message 

“give commission to instructors!”
1.	 Carefully read the problem statement and identify the input, processing and 

output requirements. 
2.	 Using top-down, stepwise refinement, state the conditional logic of the problem 

and represent the solution as a pseudocode or flowchart. 

8.2.5  Break and Continue Statements
Although a loop performs a set of repetitive task until a condition is met, sometimes 
it is desirable to skip some statement inside a loop or prematurely terminate the loop. 
In such cases, break and continue statements are used.

8.2.5.1 Break statement
A break statement is used to force immediate exit  from a loop or selection statements. 
The statement is normally used with if statement such as the one shown in Fig. 8.18. 
Once the condition is encountered the program flow is transferred to the next state-
ment following loop or selection statements. 
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BEGIN

	 FOR count=1 TO 10 DO

	 IF count = 5 THEN 

		  break

	 ENDIF

	 PRINT count //1,2,3,4

	 END FOR

END.

Fig. 8.18: Sample Break logic

Explanation 
1.	 The for loop initializes count to 1 and then sets the upper limit to 10.
2.	 Once the loop encounters 5, the break statement causes the algorithm to exit the 

loop and print numbers 0, 1, 2, 3, 4 and 5. The numbers after 5 are ignored.

8.2.5.2  Continue statement
The continue  statement is used in looping to skip the remaining statements in the 
body of the loop and  perform the next iteration. Like the break statement, continue 
statement is also used with if statements to specify the condition as shown in Fig. 8.19.

Explanation
1.	 The for loop initializes count 1 and then sets the upper limit to 10.
2.	 Once the loop encounters 5, the continue statement causes 5 to be ignored.
3.	 The algorithm prints the values 1, 2, 3, 4, 6, 7, 8, 9, 10 before exiting the loop.

BEGIN

	 FOR count=1 TO 10 DO

	 IF count = 5 THEN 

		  continue

	 ENDIF

	 PRINT count 

	 END FOR

END.

Fig. 8.19: Sample Continue logic
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Activity 8.9: Break and continue
1.	 To test if a number n is a prime number, we could loop through 2 to n - 1 and 

test whether each number divides exactly into n giving a remainder of zero. 
Formulate an algorithm for a program that tests if the given number is prime 
number. The logic should use a loop and break statements to test the use input.

2.	 Develop a pseudocode for a program that accepts positive integers starting from 
zero. If the number is less than zero, program should print an error message and 
stop reading numbers. If the number is greater than 100, the program ignores 
the number and transfers control to the next iteration. 

8.2.6  Goto Statements
Goto is a jump statement that alters the flow of execution to a section of an algorithm 
or program identified by a goto label. Let’s take an example of an algorithm that 
would continue to prompt the user for a password until he or she enters secret as the 
password (Fig. 8.20). To repeat the prompt, a label named “again:” is placed at the 
start of the pseudocode shown below. If “secret” is not entered the algorithm uses 
the goto statement to go to again label to repeat the prompt.

BEGIN
Repeat-again:
PRINT Please type your password:
READ mypassword

IF mypassword = secret THEN
PRINT “login successful”

ELSE
PRINT “incorrect password”
goto Repeat-again

END
Fig. 8.20: Sample Goto statement

Note that although a goto statement is an easy method of controlling flow of execution, 
it is considered as bad program design practice because it can cause logic errors that 
may be difficult to detect especially in complex programs.

8.2.7 The Exit Statement
The exit statement may be used in algorithm design to indicate a point at which a 
program may terminate prematurely during processing. For example, the flowchart 
shown in Fig. 8.21 shows that once the user enters a number, the exit statement is 
evaluated. If exit is true, the program terminates without adding the number to sum.

http://www.computerhope.com/jargon/p/password.htm
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Fig. 8.21: Exit statement

Sum = sum + number

Exit

No

Yes

Read number

Start

stop

Assessment Exercise 8.1
1.	 Differentiate between selection and iteration control structures.
2.	 Explain the importance of the following selection statements: 

(a)	 IF..THEN
(b)	 Nested IF
(c)	 SWITCH

3.	 Explain three types of looping control structures. Support your answers with 
illustration.

4.	 Design an algorithm for a program that would be used to compare three numbers 
x, y and z, and then display the least among the three.

5.	 State four types of selection control structures supported by most structured 
programming languages.

6.	 Study the income taxation brackets used by Rwanda’s revenue authority and 
draw a flowchart for a program that would be used to compute tax payable by an 
employee depending on marital status and monthly income.

8.3  One-Dimensional Array
A one dimensional array is a group of contiguous memory locations identified by 
the same name for storing data the same type. An array can be one dimension such 
as a list of items, two dimension such as a table or matrix. 
To make the concept of array clear, let us consider an entertainment hall that has 
capacity of 100 seats, 10 in each row. Suppose you and your friends would like to 
seat together along one row. The reserving one row of seats in an entertainment hall 
is equivalent to one-dimensional array. 
To access a particular element in an array, we specify the name of the array and 
the position number (index or subscript) of the element. A subscript is a position 
number that must be an integer or an integer expression. It is important to note 
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that reserving too much memory location that are not likely to be occupied leads 
to memory wastage.  Table 8.3 shows an integer array called Scores containing 10 
elements identified by indexes 0 to 9. 

Scores 65 50 19 30 20 45 60 89 55 72
Index 0 1 2 3 4 5 6 7 8 9

Table 8.3: One-dimensional array of 10 elements

Note that each of the score elements may be accessed by giving the name of the array 
i.e. Scores followed by the index of the element for example, Scores [5] returns the 
sixth element that holds 45 because counting starts from 0. 

8.3.1  Declaration of Arrays
An array occupy space in memory. Therefore, declaring an array is the same as 
declaring other variables only that a computer reserves contiguous memory locations 
enough to store the number of elements. The general syntax of declaring an array is:
•	 Arrayname: Array [elements] of datatype  e.g. 
•	 Scores: Array[10] of integer; 
Once the Scores array is declared, the computer sets aside ten memory locations for 
storing integers such as 65, 50, 19,30,20,45,60,89,55, and 72 shown earlier in Table 
8.3. 
Regardless of language used to implement arrays, the following are factors that need 
to be considered.
•	 Array name: Decide on a suitable array name that indicates several elements 

are to be stored e.g. scores.
•	 Data type of elements: An array can only hold elements of the same data type.
•	 Size of array: The size of an array determines the maximum number of values 

that an array will hold.
•	 Dimension:  An array can be one-dimensional list or multidimensional such as 

a table (matrix).

Activity 8.10: One dimensional array
Study Table 8.4 that shows graphical representation of two arrays: 

(a)	
Customer 20 -3 4 12 10 30
Index 0 1 2 3 4 5

(b)	 Temperature (°C) 5.1 -25.9 30.0 200.8 10.90 7.65
Index 0 1 2 3 4 5

Table 8.4: One dimensional arrays
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1.	 Determine each array name, data type and number of elements stored in each array.
2.	 Using section of a pseudocode, write a sample  declaration for  each array.

8.3.2	 Array initialization
Initialization refers to assigning an array initial values during declaration. For 
example, elements of an array can be initialized during declaration by assigning them 
to comma separated list as follows:  
Scores: Array[10] = {34, 20, 45, 87, 92, 21, 43, 56, 12, 15}
The statement first declares an array of 10 elements and then initializes each element 
with values enclosed in (curly) braces.

8.3.3  Accessing Array Elements 
In arrays, an element can be accessed by specifying the array name and the location 
(index) of the element. For example, to access the first element (index 0) in an array 
named scores, use scores [0]. Once you access the element, you can then read or 
write a value into it. 

8.3.3.1 Reading array elements
To store (read) a value into an array, you need to know the name of the array and 
the index of the element. Then a READ function may be applied to the element. 
For example READ Scores [4] stores a value in the fifth location of the score array. 
Multiple values may be read into several elements using a FOR loop as shown in 
Fig. 8.22.  

Fig. 8.22: Reading elements into an array

Explanation
1.	 The scores array is set to store 10 elements of integer type.
2.	 The for loop uses index as a counter to continously store ten elements 0 to 9.

BEGIN

	 SET Scores=Array[10]of Integer

	 FOR Index=0 TO 9 DO

		  READ Scores[Index];

		  Index = Index + 1 

	 LOOP

	 END FOR

END.
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3.	 The for loop is eliminated once the ten elements have been read into the array.

8.3.3.2  Writing Array Elements
To write (display) elements from an array, use a write function together with the 
arrayname and location (index) of the element. To display  a single value of an  array 
you must provide the array name and index to the write operation. For example, the 
value in Scores [1] may be displayed by using PRINT Scores[1] . To display multiple 
values such as the 10 elements in the Scores array, use the  FOR loop by setting the 
initial value to 0 and the upper limit to 9 as shown in Fig. 8.23 below: 

Explanation
This for loop is used to display 10 elements from the scores array. The index is 
incremented by 1 until the ten elements are displayed.

Activity 8.11: Array of integers
Thirty students were asked to rate quality of the food in the student cafeteria on a scale 
of 1 to 5 (1=poor, 2=fair, 3=neutral, 4 =good, and 5=excellent). Write a pseudocode 
for a program that places the 30 responses in an array of integers and summarizes 
the results of the poll in terms of counts and percentages.

Assessment Exercise 8.2
1.	 Declare a one-dimensional array that represents a fleet of 25 buses numbered 

from 100 to 125.
2.	 The following is a list of numbers representing customers waiting to be served 

in a banks: 64, 25,69, 67, 80 and 85. 
(a)	 Define an array named Customers and  initialize it with the waiting list 

numbers.
(b)	 Develop an pseudocode for reading and writing the elements into customer 

array.
3.	 Formulate an algorithm that converts numbers from base 10 to binary and store 

the binary digits in an array and correctly displays the  binary number.
4.	 Study Fig. 8.24 representing a pseudocode fragment for printing elements from 

and array. Identify possible errors and explain what happens if the error(s) are 
not corrected.

	 FOR Index:=0 TO 9 DO
		  WRITE Scores[Index];
		  Index:= Index + 1 
	 END FOR

Fig. 8.23: Displaying values from an array
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 Beeps:Array[5]={2,5,6,3,7,9,8};

	 FOR count=0 TO 5 DO

		  PRINT Beeps[count];

		  count= count + 1 

	 END FOR

Fig. 8.24: Beeps array

Unit Test 8
1.	 Differentiate between nested IF and switch/case selection.
2.	 Explain the importance of the following looping control statements: 

(a)	 WHILE
(b)	 FOR
(c)	 REPEAT...UNTIL

3.	 Explain at least two reasons that would make a program to infinitely repeat 
execution of a loop. How can such undesirable behaviour be resolved? 

4.	 Using illustrations, differentiate between a one-dimensional array and a matrix.
5.	 State four factors that need to be considered when declaring a one-dimensional  

array.
6.	 The Fig 8.25 below shows the faces of six-sided die with each side marked 

with dots representing faces 1 to 6. To generate random numbers, a player rolls 
a single die 6000 times and the frequency of each face that appears is stored in 
an array. Formulate an algorithm that would be used to count frequency of each 
face in an array.

Fig. 8.25: Six-sided dice
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Key Unit Competency
By the end of the unit, you should be able to explain programming paradigms.

Unit Outline
•	 Computer programming concepts.
•	 History of programming languages.
•	 Highlevel programming languages.
•	 Computer programming paradigm.
•	 Features of good programming language.

Introduction
Computers have been applied in different areas, from controlling nuclear plants to 
providing games in mobile phones. Because of this diversity in computer use, a 
computer, tablet or mobile must have  relevant programs. This unit introduces basic 
concepts used in computer programming, evolution of programming languages and 
programming paradigms since the advent of the first programmable machine. 

Activity 9.1: Computer programming concepts
The structure of any language  such as Kinyarwanda, Kiswahili, French, English or 
Chinese is described in terms of form (syntax) and meaning (semantic). In groups, 
research on the internet and use your knowledge in language studies to brainstorm 
on the two concepts.

9.1  Computer Programming Concepts
Before we begin discussing the details of computer programming, we need to consider 
a few concepts that will be used from time to time in the rest of this book. In this 
section, we briefly highlight some of the fundamental concepts used in programming 
which includes: 

9.1.1  Computer program
A computer program refer to a set of instructions, written using a programming 
language to instruct a computer to perform a specified task. A program is like a recipe. 
It contains a list of ingredients (referred to as variables) and a list of instruction 
(statements) that tell the computer what to do with the variables. 

9.1.2  Software
Though the term software and program are used interchangeably, technically, software 
refers to a program and associated documentations, while a program is basically a 
set of executable instructions loadable into computer memory.

INTRODUCTION TO COMPUTER 
PROGRAMMINGUnit 9
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9.1.3  Programming
Computer programming is a systematic process of writing a computer program using 
programming languages. The person who writes computer programs is referred to as 
a programmer. Other terms used to refer  to a programmer are software developer 
and software engineer.

9.1.4  Programming languages
A programming language is a formal language that specifies syntax and semantics 
rules used in writing a computer program. Some examples of programming languages 
include BASIC, C, C++, Java, Pascal, FORTRAN and COBOL.

9.1.5  Source code
The term source code refers to a set of instructions or statements written by a  
programmer that are not yet translated into machine-readable form. A source code is 
mostly a text file written using programming languages like BASIC, Pascal, C or C++. 

9.1.6  Object code
Once a source code is written, it can be translated into machine readable form referred 
to as object code. To translate source code statement to object code is similar to the 
way one can translate English to Kinyarwanda, there are language translators used 
to translate source code to object code. 

9.1.7  Compilers and interpreters
A compiler is a language process that translates the entire source code into object 
code. The object file can be made into an executable program by carrying out another 
process known as linking. Linking combines compiled code with one or more existing 
object codes to create an  execution file. In Windows operating system, you can easily 
identify an executable file because it has an EXE extension such as winword.exe. 
Unlike a compiler that translate the entire source code to object code, an interpreter 
translates source code one statement at a time. Because the interpreted statements 
are saved as  an executable file, every time the program is run, each statement must 
be interpreted. Table 9.1 gives a summary of differences between compilers and 
interpreters.

Interpreters Compilers

Translates source code one statement at a 
time.

Translates the entire source code at once before 
execution.

Translates the program each time it is run hence 
slower than compiling.

Compiled object code is saved on the disk hence 
runs faster than interpreted programs.

Interpreted object code takes less memory 
compared to compiled program.

Compiled programs require more storage to 
store the object.

Table 9.1: Difference between compilers and interpreters.
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Activity 9.2: Computer programming
Most students wonder how they would benefit from the study of mathematics and 
computer programming. Brainstorm 5 benefits of learning both mathematics and 
computer programming in your studies.

Assessment Exercise 9.1
1.	 Define the terms: 

(a)	 computer programming, 
(b)	 source code. 
(c)	 object code.

2.	 Differentiate between the compilers and interpreters.
3.	 Though the terms program and software are used interchangeably, they are 

technically different. Explain the difference between the two.

9.2  History of Programming languages
The person to be credited as the first programmer was a lady by the name Ada Byron 
in early 1800. Since then many programming languages have been developed over the 
years. These languages can be classified into two main categories and five generations. 
The first and second generations consist of low-level languages while the third to 
fifth generations comprise of high-level languages.

9.2.1  Low-level Programming Languages 
Low-level languages are regarded as low because they can be directly understood 
by a computer while some requires minimal translation to machine readable form. 
Low level-languages are classified into two generations: first generation languages 
also known as machine languages, and second generation languages referred to as 
assembly languages.

9.2.2  First Generation Languages 
First generation languages (1-GLs) refers to  machine languages  (binary code) used to 
program the first generation programmable computers such as UNIVAC and ENIAC. 
These computers were programmed by connecting wires on plug boards. The wiring 
configuration was used to represent data in binary form as a series of on’s (1) and 
off’s (0) in electronic circuits. Fig. 9.1 shows a sample binary code representing a 
program used to operate machines such as ENIAC.
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 		  11100011	 00000001	 10000011

 00011100	 10001101  	 10001101

 10001111	 11111000	 10000001

Fig.9.1: Machine (binary) code
NB: Machine programming was very slow, tedious and error prone. Furthermore, 
such a program is not portable because first electronic computers deferred from one 
another.    

9.2.3  Second Generation Languages  
The second generation languages (2-GLs) referred to as assembly languages marked 
the first successful attempt to make programming easier and faster. Most assembly 
languages allowed programmers to write programs as a set of symbolic codes known 
as mnemonics. Mnemonics are basically an abbreviation of keywords as shown in 
Fig. 9.2.

1: move content from address 40005 to register 
ax. 
2:add 45 to content in ax. 
3: if the sum is greater than 0, jump to location 
11300

mov  ax,   [40005] 

add	    ax,	  45

jp 	 11300	

Fig.9.2: Assembly program code
Unlike machine languages, program code written in assembly language has to be 
translated to machine code using a language processor known as assembler. An 
assembler is a special program that converts instructions written in low-level assembly 
code into machine code. Nevertheless, programs written using assembly languages 
are machine dependent hence not portable.

Activity 9.3: Second generation programming languages
Research on the internet the programming languages used on Second generation 
computers such as IBM7094 and UNIVAC 1108.   

9.2.4  Benefits and limitations of low-level languages
Having looked at the two categories of low-level programming languages, let’s 
highlight some of the benefits and limitations of low-level languages.

Benefits
1.	 Program written using low level languages requires small amount of memory 

space.
2.	 The processor executes them faster because they require minimal or no 

translation.  
3. 	 Low level languages are stable and hardly crash or break down once written.
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Limitations
1. 	 Low level languages are difficult and cumbersome to use and learn.
2. 	 They require highly trained experts both to develop and maintain.
3. 	 Checking for errors (debugging) in low level programs is difficult and time 

consuming.
4. 	 Low level programs are machine dependent hence they are not portable. 

Assessment Exercise 9.2

1.	 Define the terms binary code, mnemonics, and assembler.
2.	 Differentiate between machine languages and assembly languages.
3.	 Explain how the first generation computers were programmed using binary code.
4.	 Highlight three advantages and three disadvantages of low level languages.
5.	 Mr. Kwizera bought a new electrical kettle. On the power switch it was inscribed 

digits 0 and 1:
(a)	 Explain what each of the two symbols stand for.
(b)	 Explain why the two symbols are important in computers and computer 

programming. 

9.3  High-level Programming Languages 
Due to drawbacks of low-level languages, high-level languages began to appear in 
1950’s. High level languages that closely resembles natural (human) languages like 
English. Unlike low-level languages, high-level languages are independent of machine 
architecture. This means that, instead of a programmer spending more time learning 
the architecture of the underlying machine, more time is devoted towards solving 
a computing problem. Generally, high-level programming languages are classified 
into three generations namely: third generation (3-GLs), fourth generation (4-GLs), 
and fifth generation (5-GLs) programming languages.

9.3.1  Third generation languages
Third level languages (3-GLs) are also known as procedural or structured programming 
languages. Procedural languages make it possible to break down a program  into 
components known as procedures or modules each performing a particular task. 
Examples of 3-GL include Pascal, FORTRAN (Formula Translator), BASIC 
(Beginners All-Purpose Symbolic Instruction Code), C, C++, Adca and COBOL 
(Common Business Oriented Language).

9.3.2  Fourth generation languages
Fourth generation languages (4-GLs) were improvement on 3GLs meant to reduce 
programming effort by making programming more easier and flexible. 
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Furthermore, most 4GLs incorporates advanced programming tools for integrating 
programs with  databases and generating summarised reports. Examples of 4-GLs 
include Structured Query Language (SQL), Focus, PostScript, RPG II, 
PowerBuilder, FoxPro, Python, Progress 4GL, and Visual Basic. 

9.3.3  Fifth generation languages
Fifth generation languages (5-GLs) also known as natural languages are used to 
develop systems that solve problems using artificial intelligence. Artificial intelligence 
refers to computer systems that mimic human-like intelligence. Such intelligence 
include visual (seeing), perception, speech recognition, decision making and 
movement. Therefore, in 5GL programming, the programmer only worries about 
constraints required for the problem to be solved. Typical examples of 5GLs include 
Prolog, LISP, Scheme, Ocaml, and Mercury. 

9.3.4  Benefits and limitations of high-level languages
Having looked at the various high-level programming languages, let’s highlight some 
of the benefits and limitations associated with most of these languages.

9.3.4.1  Benefits
1. 	 High level languages are portable i.e. they are transferable from one computer 

to another.
2. 	 High level languages are user friendly and easy to use and learn.
3. 	 High level languages are more flexible, hence they enhance the creativity of the 

programmer and increase productivity in the workplace.
4. 	 A program in high level languages is easier to correct errors. 

9.3.4.2 Limitations
1. 	 Their nature encourages use of many instructions in a word or statement hence 

the complexity of these instructions slows down program processing.
2. 	 They have to be interpreted or compiled to machine readable form before the 

computer can execute them.
3.	 They require large computer memory to run.

Assessment Exercise 9.3
1.	 Distinguish between the following terms:

(a)	 Third generation. 
(b)	 Fourth generation programming languages. 

2.	 Briefly explain the evolution of programming languages. In each case, identify 
the generation and languages used.

3.	 State three advantages and three disadvantages of high-level languages.
4.	 Identify and discuss five examples of structured programming language.



177

Introduction to Computer Programming

9.4  Computer Programming Paradigms
The term paradigm was first used by Thomas Kuhn in his 1962 to refer to theoretical 
frameworks within which all scientific thinking and practices operate. In other words, 
paradigm refers to theory or ideas concerning how something should be done, made, 
or thought about. Paradigm shift refers to fundamental change on how something 
should be done, made, or thought about.  

9.4.1  Definition of Programming Paradigm
Programming paradigm refers to pattern, theory or systems of ideas that are used to 
guide development of computer programs. In other words, it is a school of thought or 
philosophy that defines concepts, practices and views on how computer programming 
should be conceptualized or performed. Several programming paradigms have 
evolved each of which presents programmers with a specific mode of thinking about 
computer programming. In the next section, we classify programming paradigms into 
imperative, functional, logic and object oriented.

9.4.2  Classification of Programming Paradigms
Programming paradigm may be classified into four main categories namely  imperative 
programming, functional programming, logic programming and object-oriented 
programming. 

9.4.2.1  Imperative programming paradigm
Imperative programming also referred to as procedure-oriented is a paradigm in 
which commands (program instructions) are executed in sequential order. One of the 
fundamental characteristic of programs written using imperative languages is that 
they have variables that change during program execution. For example, consider 
the following statement that adds two numbers x and y and assigns the result to a 
variable named sum: 
	 sum = x + y
Every time different values for variables x and y are provided, sum changes from the 
previous state to new state as shown in Table 9.2.  

x y Sum = x + y Remarks

8 9 17 17 is current state

10 12 22 17 replaced by 22

15 30 45 22 replaced by 45

Table 9.2: New state of variables
Programming languages that support imperative programming including machine 
languages, assembly languages, Basic, Pascal and C. 



178

Introduction to Computer Programming
9.4.2.2  Functional Programming Paradigm
Functional programming is a paradigm based on concept of functions that consists 
of the function name and list of values known as parameters enclosed in parenthesis. 
The main difference between functional programming and imperative paradigm is that 
functional programming does not require use of assignment statements to manipulate 
variables. Instead, manipulation of variables is accomplished by applying functions 
to a list of parameters also known as arguments. The following syntax known as 
polish notation is used to represent a function and list of arguments:
	 (function_name parameter1... parametern);
For example, consider a function that calculates sum of four parameters 5, 4, 7 and 
9. We can use addition symbol (+) or mnemonic add to represent addition function 
as follows:
	 (+ 5 4 7 9) or (Add 5 4 7 9)
In this case, the function takes four parameters to calculate the total; this gives us 
25. The parameters in this example can also be manipulated using other arithmetic 
functions like subtraction (-), multiplication (*) and division (/). Examples of 
programming languages that support functional paradigm include LISP, Scheme, 
Haskell, MetaLanguage (ML), Miranda, Caml, and F#.

Activity 9.4: Programming paradigms
1) Using examples, differentiate between imperative, and functional programming 

paradigms. 
2) Brainstorm on benefits and limitations of functional programming paradigm. 
3) Using polish notation write a function that can subtract and multiply three 

parameters.

9.4.2.3  Logic Programming Paradigm
Logic programming is a rule-based paradigm that focuses on use of logic or predicate 
calculus. In logic programming paradigms, only facts and rules are declared to produce 
desired results. This means that a logic program is a set of facts that make use of a 
set of rules to answer a query. For example, the following  statement  in a language 
known as Prolog (standards for programming logic) could mean that if ann is the 
mother of shella, then ann is an ancestor of shella:
	 ancestor(ann, shella) :- mother(ann, shella).

Logic programming paradigm fits well when applied in artificial intelligence (AI) 
that deal with the extraction of knowledge from basic facts and rules. In artificial 
intelligence, various logical assertions (proportions) about a situation are made to  
establish all known facts. Languages that emphasize logic programming paradigm 
include Prolog, GHC, Parlog, Vulcan, Polka and Mercury.
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Activity 9.5: Logic programming
•	 Brainstorm on benefits and limitations of logic programming paradigm. 
•	 Use a sample functional program to demonstrate how rule-based program 

statements are executed in regard to facts, rules, inference and answers to queries.

9.4.2.4  Object Oriented Programming Paradigm
Object-Oriented Programming Paradigm (OOP) is the latest paradigm in which 
properties (data) and operations (procedures) are combined to form objects. 
Therefore, an object represents a real-world “thing” such as a person, animal, plant, 
place, or building. In object-oriented programming, similar objects are grouped 
together to form classes. For example, the Table 9.3 below shows three types of 
classes that define properties and operations applicable to each object:

Class Properties (data) Sample object Operation

Person first name, surname, gender “Peter, Muse, Male” Add, delete, edit, person

Building House No,  Type, Town “H34, Bungalow, 
Kigali”

Add, delete, edit, building

Plants Type, Name, Height “Tree, cypress, 5 
metre”

Add, delete, edit, plant

Table 9.3: Classes and objects
Because the latest paradigm shift is development of OPP programs, most imperative 
languages like C, Pascal and Basic have evolved to support OOP. Examples of 
programming languages that support OOP include Delphi Pascal, C++, Java, C#, 
Visual Basic.Net, and Objective-C.
In summary, Table 9.4 shows the four major programming paradigms namely 
imperative, functional, logic, and object-oriented programming:

Paradigm Concept Description Program Program 
execution Results

Imperative Commands 
(instructions)

Computations as 
statements that 
directly change a 
program state

Sequence of 
commands

Executions of 
commands

Final state 
of computer 
memory

Functional Function Treats 
computation as 
the evaluation 
of mathematical 
functions 
avoiding change 
of state

Collection of 
functions

Evaluation of 
function

Value of 
the main 
function

Table 9.4: Summary of programming paradigms languages (continued next page)
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Paradigm Concept Description Program Program 
execution Results

Logic Predicate Treats a program 
as a set of 
propositions 
comprising of 
rules and facts

Logic formulas: 
axioms and theorem

Logic proving of 
theorem

Failure or 
success of 
proving

Object-
oriented

Objects and 
classes

Treats a program 
as a collection 
of objects that 
have state and 
behaviour

Collection of 
objects

Exchange 
of messages 
between objects

Final state 
of objects

Table 9.4: Summary of programming paradigms languages

Activity 9.6: OOP Paradigm
1.	 Some procedural programming languages support the object oriented paradigm. 

Differentiate the object ariented paradigm and procedural paradigm. 
2.	 Discuss the terms classes, inheritance and polymorphism. 
3.	 What are the benefits and limitations of object-oriented programming ? 

9.5  Features of Good Programming Language
Criteria for evaluating programming languages and paradigms may be controversial 
but Sebesta in his book, “Concepts of Programming Languages, tenth edition” 
suggests four main criteria namely: readability, writability, reliability and cost. 

•	 Overall simplicity: Overall simplicity of a programming language influences its 
ease of learning and readability.

•	 Good orthogonality: Relatively small set of simple constructs can be combined in 
a number of ways to provide required control and data structures of the language. 
Limited orthogonalilty makes it easier to learn, read, and understand a language.

•	 Adequate data types and data structures: Presence of adequate facilities 
for defining data types and data structures help increase the readability of a 
programming language.

•	 Clear syntax design: The syntax, or form, of the elements of a language has a 
significant effect on the readability of programs. For example, use of special 
words such as end if makes a program more readable.

•	 Support for abstraction: Programming language should provide facilities to define 
and then use complicated structures or operations in ways that allow many of the 
details to be ignored. Two types of abstraction are process (subprograms) and 
data abstraction (structures, records, objects).

•	 Expressivity: Typically expressivity means that a language has convenient ways of 
specifying computations. For example, in C, C++ and Java, the notation count++ 
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is a more convenient and shorter way of incrementing count by 1 equivalent to 
count = count + 1.

•	 Mechanisms to handle exceptions: This is the ability of a program to intercept 
run-time errors  or detect  other unusual conditions, take corrective measures, 
and then continue with normal execution. A  good programming language should 
provide mechanism to handle exceptions. 

•	 Type checking: Type checking refers to testing for data type errors during program 
compilation or run-time (execution). Because run-time type checking is expensive, 
it is more desirable for a programming language to verify data type at compilt-time.

•	 Cost-effective: The total cost of a programming language can be evaluated in terms 
of compiler cost, software development process, compilation time, implementation 
platforms, programmer training and maintenance.

Activity 9.7: Qualities of a good program
List and discuss 4 characteristics of a good programming language. 

Exercise 9.4
1.	 Explain the concepts: object-orientation, and logic programming paradigms. 
2.	 Explain why knowledge of programming language characteristics can benefit the 

whole computing community.
3.	 Explain the programming paradigm supported by F# programming language.
4.	 Explain why is it useful for a programmer to have some background in language 

design, even though he or she may never actually design a programming language?

Unit Test 9
1.	 Differentiate between a computer program and software.
2.	 Explain how evolution of computers have influenced paradigm shift in computer 

programming.  
3.	 List three examples of object-oriented programming languages.
4.	 Differentiate between procedural programming and functional programming 

paradigms.
5.	 Pascal and FORTRAN are examples of _______ generation programming 

languages.
6.	 Procedural languages make it possible to break down a program into components 

known as ___________ or ________.
7.	 A programming paradigm in which a program is executed in sequenced order 

is known as _________.
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Key Unit Competency
By the end of the unit, you should be able to write and execute a given algorithm 
using C++ Programming language. 

Unit Outline
•	 Evolution and features of C++.
•	 Compiling and executing C++ programs.
•	 Input and output streams.
•	 Variables.
•	 Constants.
•	 Output formatting.

Introduction
In 1980s when object-oriented programming started to gain grounds, Bjarne 
Stroustrup who was then a researcher at AT&T Bell Laboratories took the most 
popular language, C, and extended it with object-oriented features of SIMULA 67 
and Smalltalk to facilitate object-oriented programming (OOP). To date, C++ is 
one of the best languages for multi-paradigm programming and a good language for 
learning procedural and object-oriented programming paradigms. In this unit, we 
begin by tracing the evolution of C++ then demonstrate how to write C++ programs.

10.1  Evolution and features of C++ 
10.1.1  Evolution of C++ 
Evolution of C++ can be traced back to 1980 when Bjarne Stroustrup developed a 
language he referred to as “C with Classes” at Bell Laboratories. Motivated object-
oriented programming pioneered in Smalltalk, Stroustrup included powerful features 
of SIMULA 67 into C with design goal of supporting object-oriented programming 
while retaining backward compatibility with C. 
By 1984, more enhancements had been added to “C with Classes” hence it was 
renamed C++. Therefore, the name C++ uses C increment operator (++) to indicate that 
C++ is an enhancement of C. This integration of object orientation into procedural-
oriented C makes C++ a multiparadigm language suitable for developing system 
software like operating systems.  

10.1.2 Features of C++ 
The design and evolution of C++ describes the principles of C++ that make it suitable 
language for cross-platform systems programming. This section gives an overview 
of C++ key design, programming and language-technical concepts that you may 

INTRODUCTION TO C++ 
PROGRAMMING Unit 10
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need to familiarise with before you start writing programs. The following are general 
features of C++ that makes it one of the most powerful and flexible programming 
supported by most computers. 

•	 Portability: Programs written in C++ are portable across multiple hardware 
and software platforms. For example, a program developed to run on Microsoft 
Windows can be run on Linux or Macintosh operating systems with minimal or 
no modification.

•	 Object-oriented programming: The design goal of C++ is to support object-
oriented programming. As mentioned earlier, instead of using function that access 
global variables, both data and variables are encapsulated into an object. This 
make data more secure because the communication between program objects is 
through message passing 

•	 Keywords: Keywords also referred to as reserved words are words that have 
special meaning in a language and can only be used for intended purpose. C++ 
has a large number of reserved words such as include, main, while, for, if, else 
and return.

•	 Identifiers: In C++ programming, identifiers are symbolic names used to identify 
elements like variables and constants in a program. Because C++ is case sensitive, 
it is important to observe caution when creating user-defined identifiers.

•	 Operators: Operators are used to evaluate an expression that returns a value. 
The three main types of operators supported both by C++ are arithmetic (+, -, /, 
* and %), relational (e.g. >, <, = =, != ), and logical (&&, | |, !). Other compound 
operators include increment (++), decrement operators (– –), bitwise operators, 
and ternary  (? :) operator.

•	 Storage in memory: In C++ a variable is a named storage location in computer 
memory for holding data of a particular type. Common data types supported by 
C++ include integers, floating-point (real), characters, arrays and records. 
C++ also supports complex data types such as struct(records), arrays and linked 
lots.

•	 Case sensitive: C++ is case-sensitive. This means that an identifier (symbolic 
name) in uppercase is different from the same identifier in lowercase. For 
example, an identifier “age” is completely different from “Age” or  “AGE”. Most 
programmers C++ prefer to use lowercase for variable names, and uppercase in 
case of constants.

•	 Type checking: C++ provides a rules and mechanism for checking data types 
before execution starts. If a compiler detects inconsistence, it ensures that the 
data conversions defined in the language or by the user do not cause runtime 
errors or system failure.
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Assessment Exercise 10.1
1.	 Using examples, discuss the main features of C++ programming language.
2.	 Explain why C++ is regarded as a system programming language. 
3.	 Describe chronologically, the evolution of C++ programming language.
4.	 Explain why C++ is regarded as multi-paradigm programming language.

10.2  Syntax of C++ Program
In C++, a program may consist of objects, functions, variables, and other  components. 
However, regardless of size or complexity of a C++ program, the program has to 
include directives, and at least one function called main. For simplicity, the Fig. 10.1 
shows general syntax of a C++ program: 

Fig. 10.1: Basic Structure of C++ Program

#include directive;

global variables/constants;

user_defined_functions 

return_type main(){

   executable statements //comment

return something

}

10.2.1  Sample C++ program
To demonstrate the general syntax of a C++ program, we start with a HelloWorld 
program 10.2(a) whose output is shown in Fig. 10.2(b). Such a program is widely 
used to introduce beginners to any programming language. 

/* display “Hello World” 

#include <iostream>

using namespace std;

int main() {

cout<<”Hello World”<<endl;

return 0;

}

(a) Hello world program                      (b) Hello world output
 Fig. 10.2: Hello word C++ Program

•	 The first line that starts with forward slash  is a comment that describes what 
the program does. Comments are ignored by a compiler, but that may inform 
other programmers what the program is doing at any particular point. There are 
two types of comments:  (/*...*/) or double-slash (//). The  /* … */ multi-line 
comment instructs the compiler to ignore statements within the delimiters. On 
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the other hand, the // is a comment delimiter that instructs the compiler to ignore 
a single-line comment.  

•	 The second statement #include <iostream> that starts with # is known as a 
preprocessor directive because it instructs a preprocessor to search for iostream file 
and insert it into your program. A preprocessor is a utility program that processes 
special instructions  written in a C++ program. The preprocessor directive to 
include the iostream is critical because it contains input and output functions. 

	 In the past, the directive was accomplished using old style directive 
#include<iostream.h> that instructs a preprocessor to include iostream.h header 
file into the source code. In standard C++, this directive has been deprecated 
meaning that it is no longer supported by some compilers. However, to demonstrate 
use of <iostream.h>, hello world program can be rewritten as follows (Fig. 10.3):

/* display ‘Hello World’ on the 
screen */

#include <iostream.h>

int main() {

cout<<”Hello World”<<endl;

return 0;

}

Fig. 10.3: Using iostream.h directive

•	 Using namespace std; namespace is a feature in C++ used to ensure that 
identifiers do not overlap due to naming conflict. Identifiers may overlap by 
sharing different parts of a program. Each namespace such as std (standard)
defines a scope in which identifiers are placed. This eliminates the need to use 
an operator called scope resolution operator represented by (::).  

•	 int main (); C++ programs consist of one or more functions. The parentheses 
after main indicates that this is a subprogram unit known as a function. In 
C++, the main ( ) function is executed first regardless of its location within the 
source code. The int (integer) before main ( ) indicates that the function gives 
out (returns) integer to another function. The curley bracket { immediately after 
( ) parenthesis is the opening delimiter that shows  the start of the main function 
body. 

• 	 cout <<“Hello World”;This is the statement that actually displays Hello World 
statement on computer screen. The first word cout that stands for console out 
is used to fetch output from computer memory and print it on the screen. In this 
example, cout together with the symbol <<  known as stream insertion operator 
causes  Hello World to be printed on the screen.

	 Following Hello World string is the << endl that forces the cursor to be moved 
to a new line. The alternative is use of ‘In’ as shown below.

			   cout “Hello World|n”;



186

Introduction to C++ Programming
•	 return 0; When return statement is used at the end of a function, a value of 

0 (zero) is returned to the operating system  to indicate that the program has 
terminated successfully.

•	 The last curly bracket, } is a closing delimiter that denotes the end of the main 
function.

10.2.2 Compiling and Executing C++ Program
Typically, compilation and execution of C++ programs goes through six phases: edit, 
preprocess, compile, link, load and execute illustrated in Fig. 10.4. In this section, 
we explain these steps used to create helloworld program discussed above using an 
open source development environment known as DevC++.

Library Linker

Compiler

Preprocessor

Executable Code
(my.exe)

Source Code
(e.g. my.cpp)

Preprocessed
Source Code

Object Code
(my.obj)

Fig. 10.4: C++ compile and executive

10.2.2.1  Editing Source code
In programming context, writing a program is commonly referred to as editing source 
code. You first create a C++ program source file such as the hello program discussed 
earlier using the editor, make necessary corrections and save the program on a 
secondary storage device, such as the hard drive with .cpp, .cxx, or .cc extensions 
e.g my.cpp. Each statements must end with a semicolon and a block of statements 
belonging to a function or control structure must be enclosed in curley brackets. 
The most common C++ statements include: input statements starting with cin >>, 
output  statements that start with cout<<, and assignment such as an expression to 
add two numbers.
There are several commercial and open source development tools available in which 
you can compile, build and run C++ applications. Common examples include GNU 
C++, Dev C++, Microsoft Visual C++, CodeLite, NetBeans and Eclipse.
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10.2.2.2 Preprocessing
Once you issue the command to compile the source code, a preprocessor runs just 
before the compilation starts. The preprocessor obeys commands called preprocessor 
directives such as removing comments  and blank spaces from the source code before 
compilation takes place.

10.2.2.3 Compiling
Compiling is the next step after preprocessing in which the source code is translated 
into object code. For example, the above illustration shows that my.cpp source code 
is compiled to my.obj.

10.2.2.4 Linking
C++ programs contain references to functions defined elsewhere such as the iostream. 
A linker combines the object code compiled from your source code with the imported 
library functions to produce an executable file. In Microsoft Windows, executable 
files have .exe extension such as My.exe shown earlier in Fig.10.4. 

10.2.2.5 Loading
Before a program is executed, it must be loaded from the disk into main memory. 
This is done by the loader that takes executable file from the storage media and loads 
it into main memory. 

10.2.2.6 Execute
Finally, the computer executes the program in memory. Once the program encounters 
the end marker, it is unloaded from main memory and control returned to the operating 
system. To execute a program, type the file name with exe extension e.g my.exe at 
the command prompt.

Activity 10.1: Compiling and executing C++ program
Write a C++ program named CPPTutorial that displays a statement “Programming 
in C++ is Fun”. Using illustrations, explain the process the program undergoes from 
to be translated from source code to an executable program.  

Assessment Exercise 10.2
1.	 Explain the importance of the following compiler utilities:

(a)	 Preprocessor.		  (b)	 Linker.
2.	 Using an illustration, explain how a C++ program is compiled from source code 

to an executable file. 
3.	 Identify integrated development environments (IDE) or tools that can be used 

to create C++ applications.
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4.	 Study the sample C++ code below and identify possible syntax errors:

5.	 Using appropriate C++ integrated development environment, create a program 
that displays in “Rwanda is a Beautiful Country”.

10.3  Input and Output Streams
In C++, input/output (I/O) operations occurs in streams which are sequences of 
bytes. During input operations, bytes flow from a device e.g., output keyboard to 
main memory while in output operations, bytes flow from main memory to  devices, 
e.g., monitor. The C++ standard library contains iostream header that declares basic 
services required for stream I/O operations. The header defines cin and cout objects 
that correspond to the standard input stream, and output stream.

10.3.1  Output Stream
Output capabilities in C++ are provided by a library file known as ostream. The 
ostream has an object called cout that stands for console out that prints output on 
a standard output, usually a display screen. The object is used in conjunction with 
stream insertion operator, which is written as << (two “less than” signs). For 
example, the following cout statement statement causes the statement “Let’s be one 
Nation” to be printed on the screen: 
	 cout<< “Let’s be one Nation”; 

In this case, the << operator inserts the data that follows it on the right. In this case, 
“Let’s be one Nation” is displayed on the standard output stream.

10.3.2 Input Stream
In C++ handling input is done using the cin combined with >> known as stream 
extraction operator. ci n  represents the standard input device (or Console INput), 
i.e., keyboard. The symbol >> after the cin. The >> operator causes data input such 
as an integer value to be input from cin into computer memory. The operator must 
be followed by the variable that stores the data to be extracted from the stream. For 
example, the following statements extracts value such as 78 from keyboard buffer 
(temporary memory) and assigns it to score: 
	 cin>>score;
It is important to note that the >> operator skips black spaces encountered in the 

#include <iostreams>

using namespace std; 

 {

 cout>>“Rwanda is a Beautiful Country”;

 return 0;

 }
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input stream. The following program demonstrates use of input and output stream 
to read (accept input) and write (display) the output.

#include <iostream>

using namespace std;

int main() {

   int firstInt;  // declare a number firstInt 

   int secondInt; // declare a number  secondInt

   int sum, diff, product, quotient;

   cout << “Enter first integer: “; //use cout to prompt for input 

   cin >> firstInt;  //use cin to get/read input from user                

   cout << “Enter second integer: “;  

   cin >> secondInt;                  

    // Perform arithmetic operations

   sum  = firstInt + secondInt;

   diff = firstInt - secondInt;

   product = firstInt * secondInt;

    // use cout to display the results

   cout << “Sum is: “ << sum << endl;

   cout << “Difference is: “ << diff<< endl;

   cout << “Product is: “ << product << endl; 

   return 0;

}

Fig. 10.5 shows the output after running the program.

Fig. 10.5: Sample program using cin and cout statements

In the program, the cout << “Enter first integer: uses co u t  <<  outputstream to 
display a prompt message. This is followed by cin >> firstInt; statement used to read 
the user input from the keyboard and store the value into variable fi r s t I n t . 

Activity 10.2: Inputstreams and outputstreams
Fig. 10.6 shows a pseudocode for a program that takes three numbers x, y and z, 
evaluates the expression and displays the result on the screen. Study the pseudocode 
and convert it to a  C++ program.



190

Introduction to C++ Programming

 
 
 
 

 
 
 
 
 
 
 
 
 
10.4 Variables and Data types
The main memory is divided into byte locations also called memory cells as shown 
in Fig. 10.7. The number associated with memory location is called memory address. 
A group of consecutive bytes is used as the location for a data item, such as an 
integer or character. In this section, we describe how to store data of as valuables in 
memory cells.

10.4.1 Variables
In C++, a variable can be defined as a portion or location in memory set aside to 
store a certain value such x or y whose content is subject to change. It is called a 
variable because the value stored in it can be changed. In C++, a variable must have 
a “name” also known as identifier to uniquely identify the variable and type of data 
that to be stored in the variable. 

Activity 10.3:Variables
Let’s do the following challenge: Take the first number x whose value is 5 and store 
it in your memory. At the same time take another number y whose value is 2. Now, 
add 1 to the first number, then adds the two numbers, and finally deduct 4 from sum 
of x and y. What is the final answer?  

BEGIN
	 Var: X, Y, Z, Result: Integers
	 PRINT ”Please enter Variable X”
	 READ X;
	 PRINT “Please enter Variable Y”
	 READ Y
	 TPRINT “Please enter Variable Z”
	 READ
	 Result = X + 2*(Y - Z);
	 PRINT Result;
END.

Fig. 10.6: Pseudocode for I/O streams.

3-byte location
2 bytes location

3 bytes location
free memory

1-bytes location

Fig. 10.7: Memory allocation
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The mental process that you have just done in activity 10.3 with your memory is 
similar to what a computer can do with two variables. The same process can be 
expressed as pseudocode shown in Fig. 10.8:

Fig. 10.8: Mental challenge pseudocode

Begin

  x = 5 //x stores 5

  y = 2 //y stores 2

  x = x + 1 //x now stores 6 

  sum = X + Y //sum stores 8

 diff = sum - 4 //diff stores 4

End 

The activity demonstrates how a computer can store millions of numbers in memory,  
conduct sophisticated mathematical operations, and return the answer within fraction 
of a second.  
In C++, each variable requires an identifier (symbolic name) that distinguishes it 
from other variables. The following rules may be observed when naming variables 
and other identifiers in C++:
1.	 A valid identifier is a sequence of one or more letters, digits or underscores 

characters ( _ ). For example, x, sum, and age are valid identifiers.
2.	 C++ is a “case sensitive” language. This means that an identifier written in 

uppercase is not the same as that written in lowercase letters. For example, 
“House” is not the same as “house.”

3.	 Avoid using spaces between words. For My House should be written as one word 
like MyHouse or use an underscore to combine the two words (My_House). 

4.	 Variable identifiers should always have to begin with a letter. For example, 
“3houses” is invalid. 

5.	 Identifiers may start with an underscore character ( _ ), but in some cases the 
syntax is reserved for keywords.

6.	 The syntax rule of C++ defines keywords also known as reserved words, which 
have a unique meaning and must not be used for any other purposes.  The reserved 
words already used are main, i n t , return,  and using. The table below lists the 
reserved words of C++. C++ Reserved Words, all of which are in lower-case 
letters as shown in Table 10.1.

and and_eq asm auto bitand 
bitor bool break case catch 
char class const const_cast continue 

default delete do double dynamic_cast 

Table 10.1: Reserved words (continued next page)
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else enum explicit export extern 
false float for friend goto 
if inline int long mutable 
namespace new not not_eq operator 
or or_eq private protected public 
register reinterpret_cast return short signed 
sizeof static static_cast struct switch 
template this throw true try 
typedef typeid typename union unsigned 
using virtual void volatile wchar_t 
while xor xor_eq

Table 10.1: Reserved words
7.	 Avoid meaningless identifiers such as J23qrsnf, and restrict single letter variable names 

such as x or i to variables that are used temporarily in the a section of the program.

Activity 10.4: Rules of naming variables
From relevant sources, identify all the keywords in C++ and explain what would 
happen if a programmer uses one of these keywords as a variable identifier.

10.4.2  Data types
The computer memory is organised in  to cells that can store one or more bytes. A 
byte is the minimum amount of memory that we can manage in C++. To declare a 
variable, you must declare the type of variable so that the computer reserves enough 
bytes to store a value of that type.

10.4.2.1  Data types
Primary data type refers to basic data types used to identify the type of values used 
in a program.
The most common primary data types in C++ include: int, char, float, double,  bool, 
long int and short int.  Table 10.2 shows summary of primary data types, memory 
size, and range of acceptable values. 

Type Meaning Size (bytes) Range

short int Short integer 2 -32768 to +32767
int Integer 4 -2147483648 to +2147483647
long int Long integer 4 -2147483648 to +2147483647
float Floating point number 4 1.2 × 10-308 to 1.8 × 10308

Table 10.2: Data types and their properties (continued next page)
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double Double precision float 8 2.2 × 10-308 to 1.8 × 10308

char Alphanumeric characters 1 -128 to +127
bool Boolean value:true/false 1 true (1) or false (0)

Table 10.2: Data types and their properties

10.4.2.2 Complex data types
A complex data type is a combination data of similar or different types.
C++ supports complex data types such as string, array, struct (record), enumerated 
type, linked lists, and pointers. Apart from string data type,  other examples of 
complex data types include arrays, linked lists, stacks, queues, trees and graphs. In 
this section we only demonstrate how to declare a string.
To declare data of the type string, use the general syntax. 
String var name e.g string student_name;

Activity 10.5: Data types
In a C++ program, if user declares a short integer variable and enters a number such 
as 78,500 or a string like “pen”, the program may return a runtime error or display 
gabbage. Define the term memory overflow and explain the nature of results produced 
by such a program.

10.4.3  Declaration  of variables 
Variable declaration refers to reserving memory location by specifying the type of 
data to be stored. To declare a variable in C++, we use the following  general syntax:
 data_type variable_name; 

For example, the following two statements are valid declarations that instructs a 
computer to reserve 4 bytes for variable a, and 8 bytes for means core: mean_score.
	 int a;// reserve 4 bytes
	 double mean_score; //reserve 8 bytes

To declare more than one variables of the same type, use a single statement but 
seperate identifiers with commas as follows:
data_type variable1, variable2...variablen;
For example:
	 int first_Int, second_Int, sum, difference;

This declares four variables; first Int, second int sum and difference of integer type. 
The statement can also be written as follows.
	 int first_Int;
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Fig. 10.9: Declaring appropriate data types

	 int second_Int;
	 int sum;
	 int difference;

Depending on the range of numbers to be represented, data types like short, long 
and int can either be signed or unsigned. Signed type represents both positive and 
negative values, while unsigned type can only represent zero and positive values. 
This can be specified using signed or unsigned as follows:
	 unsigned short int number_of_sisters;
	 signed int MyAccountBalance;

Due to difficulties experienced in manipulating strings, C++ introduced a data type 
known as string. The data type treated as an object in C++ is associated functions 
(methods) used to manipulate literal strings.

Activity 10.6: Declaration of variables
1.	 Study the program of Fig. 10.9 that prompts a user to enter two numbers:  a and 

b. The program then multiplies the two numbers, and displays a valid product 
on the screen. To avoid possible memory overflow, replace the product data type 
with appropriate size that will hold a large value:#include <iostream>

using namespace std;

int main() {

int a, b, product; // declare 3 variables as integers

cout << “Enter first integer:”;// input message

cin >> a; // read a from keyboard

cout << “Enter second integer:”;

cin >> b; // read b from keyboard

product = a * b;

cout << “The product is:” << product << endl;

return 0;

}

Fig. 10.9: Declaration of valuables

2.	 Using suitable variable declaration, convert activity 10.3 consisting of variables 
x, y, sum and diff  into a C++ program. 

10.4.4  Scope of variables
The scope of a variable can either be global or local. A global variable is declared 
outside all functions while a local variable is declared within a function.. For example, 
the program shown in Fig. 10.10 declares global variables: area and perimeter outside 
the main function and local variables length and width within the main() function.
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#include <iostream>
using namespace std;
int area, perimeter; //global variables
int main() {
  int length, width;//local variables
  cout<< “Enter rectanglelength: “;
  cin>>length;
  cout<< “Enter rectangle width : “;
  cin>>width;
  //calculate the area and pereimeter
  area = length * width;
  perimeter = 2* (length + width);
  //display the area and perimeter
  cout<< “Area of rectangle:” << area<< 
endl;
  cout<< “The perimeter is:”<< 
perimeter<<endl;
return 0;

}

Fig. 10.10: Scope of variables

10.4.5 Initialisation of variables
By default, when you declare a variable, its value is unknown unless the user provides 
input. For a variable to store a concrete value, you can initialize it with a default 
value as follows:
	 data_type identifier = initial_value; 

For example, to initialise Age with a default value 0, we write the definition: 
	 unsigned int Age = 0; or unsigned int Age (0);

The program below shows how to initialise variables age and height to default 
values 24 and 5.7 as shown on the output screen. The program output shown in  the 
following figure.

Fig. 10.11: Initialising variables age and height to default values

#include <iostream>

using namespace std;

int main () {

unsigned int age = 24;

double height =5.7;

cout<<”Default age:”<<age<<endl; 

cout<<”Default 
height”<<height<<endl;

return 0;

}
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NB: Declaring and initializing a variable with a default value is referred to as defining 
a variable. In other words, to define a variable is to state its data type, identifier and 
assigning it an initial value. 

Activity 10.7: Initialisation of variables
Consider earlier problem in Activity 10.3. By initializing x with 5 and y with 2,  write 
a program that returns sum and difference.

Assessment Exercise 10.3
1.	 Using C++ statement, demonstrate how to define a variable that stores Rwanda 

cities and towns. The variable should be initialised with the name of the capital 
city, i.e. Kigali. 

2.	 Write a C++ program that can be used to compute hypotenuse of a right-angled 
triangle whose sides are a, b and c shown in Fig. 10.12 below. Note that in to 
easily solve the problem, you may be required to use an in-built square function. 

Fig. 10.12: Right angled triangle

10.5 Constants
Unlike variables, a constant is a value in memory that does not change during program 
execution. For example, in mathematics, pi is a constant whose numeric value is 22/7 
or 3.142.  In C++, constants may be classified into literal constants and symbolic 
constants. 

10.5.1 Literal Constants
Literals constants are used to express particular values within a program. For example, 
in the following statement, 25  is a literal constant because you can neither assign 
another value to it nor can you change it.
	 x + 25;

Literal constants can be classified into integer numerals, floating-point numerals, 
characters, strings and boolean constants. For example, 75 is an integer literal 
constant, while 75.0 is a floating-point literal constant. On the other hand “K” a single 
character  constant while string. 
Note that in C++, a character consists of one letter or numeral  enclosed within 
single quotation marks such as ‘H’ while a string consists of one or more characters 

a

b

c
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in double quotation marks. Boolean literal constants takes only two values, i.e., true 
(1) or false (0).

10.5.2 Symbolic Constants 
A symbolic constant is a constant that is represented  using a symbolic name. Once 
a symbolic constant is initialised, its value cannot be changed.  There are two ways 
to declare a symbolic constant in C++ are: 
1.	 Using preprocessor directive #define. For example, the following statement 

declares a symbolic constant named sodas_crate that is replaced by 24 during 
execution:

	 #define sodas_crate 24;

2.	 Using keyword const followed by the data type of the symbolic constant as 
shown in the statement below: 

	 For example, 
	 const short int sodas_crate = 24;

	 The advantage is that the compiler is able to determine data type of the constant 
hence preventing possible runtime errors. 

10.5.3	Declaring Constants 
To declare a symbolic constant of a specific data type in C++ use the keyword const 
as follows:
	 const double PI = 3.142;

The following program (Fig. 10.13) demonstrates how to declare a symbolic constant 
P1 used in a calculating area of a circle. See the output in Fig. 10.14.

#include <iostream>
using namespace std;
int main() {
   double radius, circum, area; 
   const double PI = 3.14159265; //declare PI as constant 
   cout << “Enter the radius: “;  
   cin >> radius;                
   area = radius * radius * PI;
   circum = 2.0 * radius * PI;
   cout << “Circle area is: “ << area << endl;
   cout << “Circumference is: “ << circum << endl;
   return 0;
}

Fig. 10.13: Declaring  constants

Fig. 10.14 shows a sample output after running the program.

Fig. 10.14: Declaring a constant P1 (output)
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Activity 10.8: Declaration of constants
Using C ++, write a C ++ program that prompts a user to enter the radius of a sphere, 
the program then calculates the surface area and volume of the sphere. In the source 
code,  you must declare Pi as a symbolic constant whose value is  3.142. 

10.6 Output Formatting
In programming, creating nicely formatted output is a good programming practice to 
improve readability of output and the user interface. In C++, the output stream has 
special characters and objects called manipulators used to format numbers, character 
sand strings. In this section, we discuss a few manipulators found in <i o s t r e a m > .

10.6.1 The endl manipulator
When supplied with operator << at the end of a statements, endl object causes a newline 
character to be inserted at the end of a line. For example, the Hello word statement in 
our first program can be formatted to appear on its own line with the cursor blinking 
on a new line using the statement below:

		  cout << “Hello, world!” << endl;

10.6.2 The setw() manipulator
To produce number and string output formatted to fixed width in terms of number of 
character, C++ has a manipulator object called setw(). For example, setw(20) in the 
statement below adjusts the field width between the asterisk and Hello to 20 characters. 
If the characters are fewer, a blank space is inserted on the left of the output. 
	 	 cout<< “*”<< setw(20)<< “Hello!”<<endl;

10.6.3 The setprecision() manipulator
In C++, formatting floating point numbers may be rounded off to the nearest integer 
using setprecision() manipulator. The object is used together with fixed  or scientific 
manipulators to specify the number of digits to be displayed. For example, the following 
statements rounds off the number to 2 decimal places: 
	 cout<<setprecision(2)<<fixed<<1234.56789

To use the setw() and setprecision() manipulators, you must include <iomanip> 
preprocessor directive. For example, the following program demonstrates how to use 
the three objects to format output as shown in Fig. 10.15.



199

Introduction to C++ Programming

#include <iostream>
#include <iomanip>
using namespace std;
int main(){
  cout << setw(9) << 8.25 << endl;
  cout << setw(20)<< “Hello!”<< endl;
    cout<<setprecision(2)<<fixed<<1234.56789<< endl;
    cout<<setprecision(3)<<scientific<<1234.56789<< endl;
  return 0;
}

Fig. 10.14 shows the output formatted using sector(), setprecision fixed and scientific 
manipulators.

Fig. 10.14: Using the three objects to format output

10.6.4 Format Base of Integer Output 
In computing, the commonly used numeric constants are decimal integers, floating 
point (real numbers), octal (base 8) and hexadecimal (base 16). In C++ we use format 
specifier to format or convert a number from one base to another. To change the base 
of printed values use dec, o ct , and he x  manipulators. The following program 
demonstrates how to format the three number systems: 

#include <iostream>
using namespace std;
int main(){
  int value =  65; 
  char letter = ‘B’; 
  cout << “The following is display of formatted output” << endl;
  cout << “decimal: “ << dec<<value << endl;
  cout << “octal:” << oct<<value << endl;
  cout << “hexadecimal”<< hex<<value <<endl; 
  return 0;
}

Fig. 10.15 shows output formatted to decimal, binary and hexadecimal numbers.
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Fig. 10.15: Using three base manipulators

10.6.5  Format Output using Escape Sequence 
Output formatting can also be accomplished using a combination of a backslash and 
a character, known as escape sequence. They are called escape sequences because 
the backslash causes an “escape” from normal way a character is interpreted by C++ 
compiler. An example of an escape sequence used instead of endl is the newline “\n” 
that causes the cursor to go to a new line. The following program uses “\t” escape 
sequence characters to format output into rows and columns.

#include <iostream>
using namespace std;

int main(){

  cout << “Name\t orange\t mango\t apple \n”;

  cout << “John:\t3\t 5\t 8”<< endl;

  cout << “Janet:\t 4\t 5\t 7”<< endl;

  cout <<”Peter:\t 5\t 3\t 6”<< endl;

  return 0;}

Fig. 10.16 shows the output formatted to rows and columns using ‘\t’ escape sequence.

Fig. 10.16: Using escape sequence to format output
Table 10.4 shows a summary of common escape sequence used to format output:

Escape Meaning Description
\n New line Forces the cursor or insertion pointer to move 

to a new line
\t Tab Moves tabs horizontally to create uniform 

white spaces between outputs.
\b backspace Move the character backwards without 

erasing anything.
\v Vertical tab Moves tabs vertically to create uniform white 

spaces between outputs.
\r Carriage return Moves the cursor to the first column of the  

net line.
\f form feed Moves the cursor to the start on next page.

Table 10.4: Escape sequence characters
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Activity 10.9: Formatted output
Create a BMI calculator program that reads the user’s weight in kilograms and height 
in meters, then calculates and displays the user’s body mass index in three decimal 
places using the expression below:

Assessment Exercise 10.4
1.	 Explain the importance of using fixed and scientific notation in formatting of 

floating-point numbers.
2.	 Using manipulator functions setw() and setprecision (), modify the program used 

for calculating surface area and volume of a sphere in Activity 10.9 so that the 
results are displayed correct to two decimal places.

3.	 Explain importance of the following escape sequence characters used to format 
output in C++ programs: \n, \b, \a, and \t. 

Unit Test 10
1.	 Define the term reserved word.
2.	 Explain why C++ is both procedural and object-oriented programming languages.
3.	 Explain how C++ evolved from C.
4.	 State five common features in C and C++ programming languages.
5.	 Differentiate between procedural and object-oriented programming.
6.	 	State five rules that should be observed when choosing constant and variable 

identifiers.
7.	 Why is it illegal to use a keyword such as if, else or for reserved for specific 

purpose in C++? 
8.	 Write a program showing the basic structure of a  C++ program.
9.	 	Write a C++ program that allows the user to enter marks for three subject. The 

program should calculate, then display the total and mean score of the three 
subjects. 

10.		Write a program that prompts a user  to input five floating point numbers. The 
program computes sum and average, and then displays  the results  correct to 3 
decimal places.  

11.		Write a program that reads temperature for a week in degree celsius, converts 
the celsius into Fahrenheit, and then calculate the average weekly temperature. 
The program should display the output formatted to 2 decimal places.

12.		Mutuyimana took a loan of FRW 400 000 from a bank payable in three years at 
an annual interest rate of 8%. Write a program that calculates  total amount paid  
at the end of the third year.

weight_kilograms
height_metres x height_meters

BMI =
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Key Unit Competency
By the end of the unit, you should be able to apply expressions and operators in C++ 
programming.

Unit Outline
•	 Expressions and operators.
•	 Classification of C++ operators.
•	 Classification of C++ expressions.

Introduction
To write expressions that do not corrupt computer memory or return invalid results, 
you need to understand operators used in C++ programming language. This unit is 
related to the section on operators and expressions discussed earlier under the unit on 
introduction to programming. The unit also serves as a continuation to the previous 
unit on introduction to C++ programming. To begin with, we discuss in details 
operators used in C++ such as assignment, arithmetic, relational, logical, bitwise, and 
special operators. Later, we demonstrate how to form primary to complex expressions 
using C++ operators.  

11.1  Expressions and Operators
In mathematics, the term expression refers to a sequence of operators and operands 
that specifies relational or mathematical computation. An operator is a sign (e.g. 
+, -), or keywords, while an operand is numeric value manipulated by an operator. 

	

Y = 15+3÷3 ×(12+5)
operators operands

Brackets

In programming context, an operator is a symbol or keyword that instructs a compiler 
to evaluate mathematical or logical expressions. In addition to mathematical operators, 
most programming languages support special operators some of which are English-like 
keywords. Given that C++ is a system programming language, most of its operators 
are special symbols available on a standard keyboard. This makes the language more 
portable, and internationally accepted because its syntax does not rely a lot on natural 
languages like  English.

EXPRESSIONS AND OPERATORS 
IN C++ LANGUAGEUnit 11
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11.2 Classification of C++ Operators
Given that operators, operands and expressions go hand-in-hand, in every section 
we demonstrate how to apply an operator on operands  using simple expressions.  

11.2.1 Arithmetic operators
The most basic mathematical signs are the arithmetic operators which include addition 
(+), subtraction (−), multiplication (×), and division (÷). In  C++, the same operators 
are used but multiplication and division operators are replaced with asterisk (*) and 
forward slash (/) respectively. 
Table 11.1 below gives a summary of the five arithmetic operators supported in C++.

Operator Name Description Example (A=10, B=20)

+ Addition Adds two operands A+B returns 30
− Subtraction Subtract right operand 

from left
A−B returns −10

* Multiplication Multiplies binary 
operands

A*B returns 200

/ Division Divides numerator by 
denominator

B/A returns 2

% Modulus Gives remainder of 
integer division

B%A returns 0

Table 11.1: Arithmetic operators

Observation on the table above shows that the only unusual operator in arithmetic 
is the modulus (%) symbol. In C++, the operator is used to return remainder of an 
integer division. For example: 

		  remainder=7%4; //returns 3 
		  test = 16%4; returns 0.

The five arithmetic operators are binary operators because they take two operands. 
For example, the expression 8 + 7 contains a binary operator (+) and two operands, 
i.e., 8 and 7. The following program shows how to use of arithmetic expressions in 
C++ whose output is shown in Fig 11.1.
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#include <iostream>

using namespace std;

int main () {

int x = 18, y = 6; 

int prod, sum, rem;

float div; 

sum = x+y; //compute sum              

div = x/y; //compute division    

Fig. 11.1: Arithmetic operators

prod = x*y;//compute product         

rem = x%y; //compute remainder       

cout<<”Sum:”<<sum<<endl;

cout<<”Quotient:”<<div<<endl;

cout<<”Product:”<<prod<<endl;

cout<<”Remainder:”<<rem<<endl;

return 0;

}

11.2.1.1 Procedure rule
Similar to BODMAS rule in mathematics, C++ uses precedence rule to evaluate arithmetic 
expressions: The precedence rule from the highest to the lowest is as follows:

Arithmetic Precedence
1 * Multiplication Highest
2 / Division
3 % Modulus
4 + Addition
5 - Subtraction Lowest

Table 11.2: Precedence rule in C++
	 For example, in the following expression:
	 k = a * ((b + c)/d);
1.	 Operators in expressions contained within parentheses are evaluated first. 

Parentheses are said to be at the “highest level of precedence.” In cases of nested 
parentheses, the innermost pair of parentheses are applied first; in this case (b+c) 
is evaluated first.

2.	 Multiplication and division operations are applied next. If an expression contains 
several multiplication, division and modulus operations, operators are evaluated 
from left to right. This is because multiplication, division and modulus are said 
to be on the same level of precedence.

3.	 Addition and subtraction have the lowest precedence. If an expression contains 
several addition and subtraction operations, the operators are applied from left to 
right. 
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Activity 11.1: Precedence rule
1.	 Using the precedence rule determine the value of X in the following expression:
		  X = 23 + 5 + (84* 9) + 6 / 3;

2.	 What are the possible values of X if the precedence rule is not applied?	
3.	 Study the sample code below and identify an expression that replaces content 

of amount variable with product of quantity and price. The output is shown in 
Fig. 11.2.

	 #include<iostream>

	 using namespace std;

	 int main () {

int quantity =12;

double amount =1.0,price=500;

amount = quantity * price;

cout<< “The amount is: “<<amount<<endl;

return 0;

4.	 Rewrite the following mathematical expression into a C++ assignment statement: 
ax2 + bx + c.

11.2.2 Assignment operators
The assignment operator that resembles equals to (=) causes the operand on the left 
side of the assignment operator to have its value changed to the value on the right 
side of the operator. For example, the following statement assigns the integer value 
5 to the variable named fruit:
	 fruit = 5;
The part at the left of the assignment operator (=) is known as the lvalue (left value) 
and the right one as the rvalue (right value). The lvalue has to be a variable whereas 
the rvalue can be either a constant, a variable, result of an operation or any combination 
of these. The most important rule when assigning is the right-to-left rule: Assignment 
operation always takes place from right to left, and never the other way round. The 
following statement is invalid!
	 5 = students;

Activity 11.2: Assignment operator
Study the program code below in which variables a, b and c are initialized with values 
7, 9 and 10 respectively as shown in Fig 11.3. Determine the values printed by each 
of the cout statements if the value of a is 12 and b is 15.

Fig. 11.2: Precedence rule
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#include <iostream>

using namespace std;

int main () {

int a, b, c;

a = 7; b = 9;

a = b; b = 7;

c=10; c = a + 2*(b=5);

cout<<”Print a:”<<a<<endl;

cout<<”Print b:”<<b<<endl; 

cout<<”Print c”<<c<<endl;

return 0;

}

11.2.3 Compound Assignment Operators
C++ has a unique way of combining arithmetic and assignment operators compound 
operators typically referred to as self-assigned operators. The most commonly used 
self-assigned operators are conditional addition (+=), subtraction (-=), division (/=), 
multiplication (*=), and modulus (%=). Those used with other operators such as 
>>=, <<=, &=, ^=, |=) are left for class discussion. Table 11.3 gives a summary of 
the five self-assigned operators.

Operator Name Description Example (A=10, B=20)

+= Conditional 
Addition

Adds to itself value on the 
right operator

A+=B; assigns A=30
(A=A+B; A=10+20)

−= Conditional 
Subtraction

Subtract from itself value on 
the right of operator

A−=B; assigns A=−10
(A=A−B; A=10−20)

*= Conditional 
Multiplication

Multiplies itself with value on 
the right of operator

A*=B assigns A=200
(A=A*B; A=10*20)

/= Conditional 
Division

Divides itself by value on the 
right of operator

B/=A assigns A=2
(B=B/A; A=20/10)

%= Conditional 
Modulus

Gives remainder of integer 
division

B%=A assigns B=0
(A=A%B; A=10%20)

 Table 11.3: Self-assigned operators

11.2.4 Increment  and decrement operators
In C++, increasing a value by 1 is referred to as incrementing while decreasing it by 
1 is decrementing. C++ supports  a unary (++) operator as a shortcut to incrementing 
a value by 1 and decrementing (--) by 1. Note that the term unary means that the 
operator takes only one operand. For example, the following statements increases 
and decreases value of count by 1 respectively:
	 count++; // equivalent to count=count+1.
	 Count--; // equivalent to count=count-1.

Fig. 11.3: Assignment operators 
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The statements can also be expressed using self-assigned operators as follows:  
	 count += 1; 	 count -= 1;
One characteristic of ++ and -- operators is that they can be used as prefix and suffix. 
This means that, an operator can be written either before the variable e.g. ++count 
or after it as in, count++.  The prefix  increments the value, and then fetch it while 
postfix fetches the value first, then increments the original. For example, if x is 5 
and you write:
	 int a = ++x;
the statement increments x to 6, and then fetches the value to assign it to a. The 
resulting value of a is 6 and that of x is also 6. If, after doing this operation, you write:
	 int b = x++;
the statement fetches the value in x. i.e., 6 and assigns it to b, then it goes back to 
increment x. Thus, the new value of b is 6, and that of x is 7.

Activity 11.3: Increment and decrement operators
Assuming orange = 15, banana = 35 and isombe = 13, clients= 3. Demonstrate how 
you would increment and decrement each item by 1?

11.2.5 Relational operators
There are six relational operators supported in C++: equals (==), less than (<), greater 
than (>), less than or equal to (<=), greater than or equal to (>=), and not equals (!=). 
Like arithmetic operators, relational operators are also binary operators because they 
act on two operands e.g. 5>3 to return true or false.
 Table 11.4 shows summary of relational operator in their order of precedence from 
highest to lowest. 

Operator Name Description Example (A=10, B=20)

= = Equal to Checks two operands are equal, if 
yes it returns true.

A =  =B; returns false

< Less than Checks if operand on left is less than 
that on the right.

A<B; returns true

> Greater than Checks if operand on left is greater 
than that on the right.

A>B; returns false

<= Less than or 
equals to

Checks if operand on left is less than 
or equal to that on the right.

A<=B; returns true

>= Greater than 
or equals to

Checks if operand on left is greater 
than or equal to that on the right.

A>=B; returns false

!= Not equal to Checks if operand on left is not 
equal to that on the right.

A!=B; returns true

Table 11.4: Relational operators
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NB: In C++ the single (=) sign is used as an assignment operator while  (==)is 
used as the equality sign.  

Activity 11.4:Relational operator
Study the following program and determine the output after execution of statements 
consisting of relational expressions. Note that, in C++, evaluation of relational and 
logical expressions returns 1 for true or 0 representing false. 
#include <iostream>
using namespace std;
int main(){
int x =7, y=5;
cout<<(x==y)<<endl; 
cout<<(x>y)<<endl;
cout<< (x!=y)<<endl;
cout<<(x<y)<<endl;
return 0;

11.2.6 Logical operators
In C++, there are three logical operators used to form complex relational conditions. 
These are: && (AND), || (OR), and ! (NOT) also called negation. Whereas the && and 
|| operators are binary, ! is a unary operator that takes only one operand on its right. 
Consequently, the operator negates the value or expression on its right to return 
opposite Boolean value.  Table 11.5 gives a summary of the three operators.

Operator Name Description Example (A=10, B=20)

&& AND Checks if two operands or 
expressions are true, if one is false it 
returns false.

A<5&& B>17; returns 
false

|| OR Checks if one of the operand or 
expressions is true, if either is true it 
returns true.

A<5|| B>17; returns true

! NOT Unary operator that negates its 
operand or expression. If true, it 
returns false.

!(A>=B); returns true

Table 11.5: Logical operators
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Activity 11.5: Logical operators
Study the following program and determine the output after execution of the 
statements consisting of a mixture of relational and logical expressions. 
#include <iostream>
using namespace std;
int main(){
int x =42, y=7, z=24;
cout<<(x<=35) && (z==24); 
cout<<(x==35) ||(y<10);
cout<<(x>y) && (y<z);
return 0;

11.2.7 Bitwise operators
Unlike other operators mostly used to manipulate decimal (base 10) numbers, bitwise 
operators are used to manipulate binary numbers.  Table 11.6 gives a summary of  
bitwise operators supported by C++ namely: AND (&) , inclusive OR ( | ), exclusive 
OR ( ^ ) one’s complement (~), binary left shift <<, and binary right shift. 

Bitwise 
operator

Name Description Example 

& Bitwise AND Checks if both A and B 
are true to return true. If 
either or both are false, the 
expression returns false 
(0).

If A= 1, B=0 then 
A&B returns 0 

| Bitwise OR Checks if either A or B is 
true to return true. If both 
are false, the expression 
returns false (0).

If A= 1, B=0 then A|B 
returns 1

^ Bitwise XOR Checks if either A or B 
is true to return true. If 
both are true or false, the 
expression returns false 
(0).

If A= 0, B=1 then A^B 
returns 1

~ One’s 
complement

Unary inversion of 0’s to 
1 and 1’s to 0s in a binary 
number.  

If A= 1, B=0 then ~A 
returns 0, ~B returns 1

Table 11.6: Bitwise operators (continued next page)
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<< Bitwise left 
shift

The operator shifts the bits 
of an expression left by the 
number of bits specified.

If A=00001110 then 
A<<2 returns 00111000

>> Bitwise right 
shift

The operator shifts the 
bits of an expression right 
by the number of bits 
specified.

If A=00111000 then 
A>>2 returns  00001110

Table 11.6: Bitwise operators

To illustrate how the operators &, | and ̂  are used, we take two variables p and q.  The 
columns p&q, p|q, and p^q in Table 11.7 shows the result of binary three expressions:

p q p&q p|q p˄q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Table 11.7: Bitwise operations
To apply Bitwise operators on decimal numbers, each number must first be converted 
into binary form. For example, assuming two  variables A and B have 60 and 13 
respectively, we perform binary AND, inclusive OR, exclusive OR and one’s 
complement as follows:
A = 00111100		 A&B = 00001100	 A|B = 00111101
B = 00001101		 A^B = 00110001	 ~A = 11000011

 Activity 11.6: Bitwise operators
1.	 Using C++ expressions, distinguish between logical operators, and bitwise 

operators for AND, OR and NOT.
2.	 Study the table 11.8 below and state the values returned by evaluating binary 

expressions p&q, p|q and p^q.  
p q p&q p|q p˄q

0 0
0 1
1 1
1 0

Table 11.8: Bitwise operations
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11.2.8 Conditional/Ternary Operator
The conditional operator represented by a question marks and colon (?:) is the only 
ternary operator in C++ that takes three operands. The operator evaluates an expression 
returning a value if the expression after (?) is true, or the expression following (:) if 
the condition  returns false. The general format of the statement is:
condition ? result1 : result 2;

If condition on the left of  (?) sign is true, the expression returns result 1, otherwise if 
the condition returns false, the expressions returns result 2. For example, the following 
statement displays 10, because 7 is not less than 5;

 cout<< 7 < 5 ? 4 : 10; //displays 10

NB: The conditional operator and the IF...ELSE selection works exactly the same. 
The only advantage is shortened code hence saving compile time.

Activity 11.7: Conditional operators
Identify the value displayed on screen after evaluating by the the following 
expressions:	
	 cout<<7==5?4:3;

	 cout<<7>=5+2?4:3;

	 cout<<5>3?a:b;

	 cout<<a>b?a:b;

11.2.9 Miscellaneous Operators
C++ supports other miscellaneous operators such as sizeof, cast [( )], comma [,], 
address of [&], and scope resolution operator [::]. 

11.2.9.1 The size of operator
The sizeof operator is an inbuilt function that accepts one parameter and returns the 
size in bytes. For example, the following statement assigns 8 to memsize because a 
double has 8 bytes:
	 memsize = sizeof (double);

11.2.9.2 Address of operator [&]
The address of (&) operator is said to be overloaded operator because it can be used 
for more than one operations. When applied on binary operands, it is interpreted by 
the compiler as  a bitwise & (AND) operator. But when the symbol is followed by 
a variable as shown in the following statement, it returns memory address allocated 
to the variable: 
	 int location = &distance;
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The statement assigns memory address of distance to location which can be formatted  
and displayed in hexadecimal format as follows:

	 cout<<setbase(16)<<location;

11.2.9.3 Cast [( )] operator
Type casting operator represented with brackets () converts (casts) a value from one 
data type to another. This is achieved by preceding the expression to be converted 
by the new type enclosed between parentheses (()) or using functional notation. For 
example, if distance is a float, it can be casted to an integer as follows:

float distance = 3.14;

approx_dist = (int)distance; //C-type casting 

approx_dist = int(distance); //functional notation

NB: In C++, casting a variable declared as double or float to int results in loss of 
precision due to loss in floating-point part. In the above example, the value 
assigned to approx_distance is 3! 

11.2.9.4 Comma [ , ] operator
The comma (,) operator separates two or more expressions where only one expression 
is expected. The result of the comma-separated list is the value of the last expression. 
For example, the following expression  assigns 3 to b first, then assigns b+2 to a, so 
that a becomes 5 and b holds 3: 
	 a = (b=3, b+2);

11.2.9.5 Scope resolution [::] operator
The scope resoultion operator represented by two consecutive colons is used to 
identify and disambiguate similar identifiers used in different scopes. The operator is 
used to identify a member of a namespace or class. For example, if using namespace 
declaration is omitted in a C++ program, you can use:: to access  cout as follows:

	 std::cout<<“I Enjoy Programming!\n”;

11.2.10: Operator precedence in C++
When writing complex expressions with several operands, we may have some doubts 
about which operand is evaluated first and which later. In C++, the precedence rule is 
an established order in which an expression consisting of mixed operators is executed. 
Just like in BODMAS, the order of precedence can be changed by use of parenthesis. 
In summary, Table 11.9 gives precedence of the operators discussed in this section 
in order of the highest to the lowest.
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Operator Description Precedence Highest

Lowest

* multiplication left to right
/ division

% modulus

+ addition left to right
- subtraction

<< bitwise left shift left to right
>> bitwise right shift

<  relational less than left to right
<= relational less than or equal to

> relational greater than

>= relational greater than or equal to

== relational is equal to left to right
!= relational is not equal to

& bitwise AND left to right
^ bitwise exclusive OR left to right
| bitwise inclusive OR left to right

&& logical AND left to right
|| logical OR left to right
?:  ternary conditional right to left
= assignment right to left

+= addition assignment

-= subtraction assignment

*=  multiplication assignment

/= division assignment

%= modulus assignment

&= bitwise AND assignment

^= bitwise exclusive OR assignment

|= bitwise inclusive OR assignment

, comma left to right
Table 11.9: Precedence in operator precedence in C++
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Assessment Exercise 11.1
1.	 Define the following terms as used in C++ programming: 

(a)	 Expression
(b)	 Operand 
(c)	 Operator  

2.	 Giving example, differentiate between postfix and prefix operators.
3.	 Using sample codes, discuss five main categories of operators used in C++ 

Programming. 
4.	 Explain  the design goal that motivated the use of special characters as operators 

in C++ programming language.
5.	 Assuming y has a value of 20, and x has 8. What would happen if a programmer 

writes a statement to compare whether y is equal to x but instead writes:
	 y = x ;
6.	 Write the following mathematical expression as a C++ assignment statement.
	 y = ax3 + bx + 7
7.	 Perform bitwise AND, inclusive OR and one’s complement on the following 

variables:
(a)	 Binary: p =1111111, q = 110011.
(b)	 Decimal: x = 25, y =50.
(c)	 Hexadecimal: m= DB, n = A2.

8.	 Between arithmetic, and relational operators, which category has higher 
precedence in C++. Give a table of summary on the order of precedence in the 
two categories. 

11.3 Classication of  C++ Expressions
Depending on the type of operator used on one or more operands, expressions can 
be classified into several categories based on complex or side effect. Remember that, 
an expression is a sequence of operators and operands used for one or more of these 
purposes:
•	 Computing a value from one or more operands.
•	 Generating “side effects” such as modifying variables.
In C++ programming, expressions may be classified into primary; postfix, unary, 
binary, conditional; constant, and type casting expressions.
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11.3.1 Primary expressions
A primary expression is the most basic expression from which more complex 
expressions are built. Therefore, a primary expression can be as simple as having a 
single character or simple increment expression as shown below:
	 120; // numeric constant 
	 ‘g’; // character constant
	 (x + 1 ); //increment expression

11.3.2 Postfix expressions
Postfix expressions consist of primary expression in which operators like ++ follow 
a primary expression. For example, if C=0, and index =1, the following are postfix 
expressions that increment their values by 1:

	 C++; //returns 1, and index++ //returns 2

11.3.3 Unary (Prefix) Expressions 
A unary operator is placed on the left of an expression of only one operand. Such 
operators include address of (&), unary plus(+), unary minus (-), logical not (!), 
bitwise negation [~], increment [++], decrement [--], and sizeof. The following are 
examples of unary expressions.
	 --6; //returns 5 

	 ++5; //returns 6

	 !(101100110); //returns 010011001  	
Note that arithmetic signs + and – can be used as unary operators. The result of the 
unary plus operator (+) is the positive value of its operand, while that of unary negation 
operator (–) produces the negative of its operand. For example, if x = 5, then;
	 +x; //returns 5; and -x //returns -5

11.3.4 Binary Expressions

Binary operators act on two operands in an expression. The main categories of binary 
operators are multiplicative (*, / and %), additive ( +,-), shift (<<, >>), relational (<, 
>, <=, >=, ==, !=), Bitwise & and |,   logical && and ||, assignment (=) and compound 
assignment, as well as the comma operators. For example, the following are binary 
expressions: 
	 sum = x + y; 
	 ans =7!= 8; //returns true
	 y = a + k * (x * (x + 7));
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11.3.5 Ternary Expressions
A conditional operator is a ternary operator that takes three operands. For example, 
the sample code below tests if i is greater than j. Since i has 3 and j has 5, the first 
condition returns false hence  the program prints  “5 is greater”:
       int i = 3,j = 5;
       cout<<(i>j?i:j)<<“is greater.”;

11.3.6 Constant expressions
Since a constant value cannot be modified, C++ provides keyword const to enable 
programmers write expressions that enforce this constraint. The following C++ code 
contains an expression that declares size as a constant. The program then calculates 
and prints the product :
	 int main (){
	 const double unitcost = 11.0;
	 double amount= 0.0;
	 int quanitity = 30;
	 amount = unitcost * quantity;
	 cout<<“Total.”<< amount<<endl;
	 return 0;}

11.3.7 Type casting expressions
Type casting expressions are statements with explicit type conversions. By default 
C++ syntax defines conversions between its fundamental types (int, char, float, double, 
and char). This type of conversion that is automatically handled by the compiler 
is referred to as implicit type conversion. For example, the following assignment 
statements implicitly converts values from one type to another.
	 int main (){
	 int inum; 
	 long lnum1, lnum2;
	 lnum1=inum; 
	 lnum2=inum * lnum2; 
	 return 0;}
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In the following program, area is converted from float to double. This is because 
the compiler automatically converts area to data type with the highest precision in 
the expression. In this case, the display is 8 bytes for a double instead of the 4 bytes 
used to store float. 
	 int main() {
	 const double PI = 3.142;
	 float area, radius 3.5;
	 area = PI * radius*radius;
	 cout<<“ Mem Size:”<<sizeof(area)<<endl;
	 }

You can also specify type conversions when you need more precise control of the 
conversions applied. This is achieved by using cast operator () within which is the 
type the operand is to be casted to. For example, the above code can be modified 
to force the area to be demoted to an integer value which leads to loss in precision:
	 int main() {
	 const double PI = 3.142;
	 float area, radius 3.5;
	 area = int(PI * radius*radius);
	 cout<<“Mem Size:”<< sizeof(area)<<endl;
	 }

Activity 11.8: Expressions and operators
1.	 In C++ expressions, operators such as +, and -, can be overloaded such that their 

meanings depend on context of use. Using examples, explain how each of the 
operators can be used in a unary and binary expressions.

2.	 Using sample expressions, differentiate between binary expressions and tertiary 
expressions in C++ programming. 

Assessment Exercise 11.2
1.	 Differentiate between a “statement” and an “expression” as used in programming.
2.	 Using sample code, demonstrate how unary expression differs from binary and 

unary expressions.
3.	 Identify the output of the expression in the following C++ code snippet:
	 int main (){ 
	 int x=10;double y=3.5;
	 float product =0.0;
	 product = x * y;
	 cout<<product<<” “<<sizeof(product);
	 return 0;}
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Unit Test 11 
1.	 Define the following terms as used in C++ programming: 

(a)	 Operator precedence. 	 (b)	 Self-assigned operator.
2.	 Differentiate between prefix expression and postfix expressions.
3.	 State two advantages of using special keyboard symbols as operators in C++ 

instead of English keywords.
4.	 Differentiate between bitwise inclusive ( | ) OR, and  XOR (^).
5.	 To reference storage of a variable in main memory, two operators, namely size 

of and address of (&) may be used. Using sample code, differentiate between 
the two operators.

6.	 With  aid of a table on ASCII character set, write a program that prints integer 
equivalent of  alphabetic characters typed in lowercase and uppercase on the 
keyboard. Note that although the declaration should be of type char, the output 
should be of integer type. 

7.	 Using a table, classify arithmetic, relational, assignments and bitwise operators 
in order of precedence starting with the highest.

8.	 Write C++ program that calculates and outputs surface are and volume of a 
sphere.

9.	 Write a C++ program that calculates and displays alternative roots of a quadratic 
equation:

	 root = ax2 + bx + c
10.	 Study the program given below and identify the correct output:

#include <iostream>
int main()  {
  using namespace std;
  float num1, num2;
  cout << “Enter first number: “;
  cin >> num1;
  cout << “Enter second number: “;
  cin >> num2;
  cout << “num1 = “ << num1 << “; num2 = “ << num2 << endl;
  cout << “num1 + num2 = “ << num1 + num2 << endl;
  cout << “num1 - num2 = “ << num1 - num2 << endl;
  cout << “num1 * num2 = “ << num1 * num2 << endl;
  cout << “num1 / num2 = “ << num1 / num2 << endl;
  return 0;
} //end main
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11.	 Identify synthax errors in the following program and rewrite to make it complete:
#include <iostream>
u#include <iostream>
using namespace std;
int main() {
int dec1 = 2, dec = 4;
double num1 = 2.5, num2 = 5.0;
   cout>>dec1<<“+“<<dec2<<“=“<<dec1+dec2<<end; 
   cout<<num1<<“+“<<num2<<“=“<<num1+num2<<end;
   cout>>dec1<<“-“<<dec2<<“=“<<dec1-dec2<<end; 
   cout<<num1<<“-“<<num2<<“=“<<num1-num2<<end;
   cout>>dec1<<“\“<<dec2<<“=“<<dec1\dec2<<end; 
   cout<<num1<<“\“<<num2<<“=“<<num1\num2<<end;
} //end main
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Key Unit Competency
By the end of the unit, you should be able to use control statements in C++ program 
to implement branching and iterations.

Unit Outline
•	 Sequence control structures.
•	 Selection statements.
•	 Looping control statements.
•	 Jump control statements.

Introduction
Control structure refers to a block of statements that determine the flow of control, or 
order in which program statements are executed. The flow of control in a program can 
be examined at three levels – expression level, statement level, and program level. In 
the previous unit, we examined flow of control within expressions, which is governed 
by precedence rule. In this unit, we move a step higher by looking at statement level 
flow of control implemented using sequence, selection, and iteration control statements. 
This unit serve as a bridge to the next unit in which we discuss the highest level of 
control among program units known as procedures or functions. In this unit, we begin 
by reviewing of sequence control structure in which  program statements are executed 
in the order they appear on the program. Later, we demonstrate how to write program 
statements that alter the flow of control using conditional logic.

12.1  Sequence Control Structure
Sequence control structure is a simple flow of control in which statements are executed 
in the order they are written. So far, most of the C++ programs we have discussed are 
sequential in that, statements are executed in the order they appear in the program. 
For example, below is a sample program implemented using sequence control 
structures. The program execution starts by reading two numbers (num1 and num2), 
and then displays the value of each number before swapping (interchanging) them. 
The last two cout statements display the values of num1 and num2 after swapping 
them as shown on the output screen.  

#include<iostream>
using namespace std;
int main(){
int num1, num2, swap;
cout<<”Enter first number:  “;

CONTROL STATEMENTS IN C++Unit 12
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cin>>num1;
cout<<”Enter second number:  “;
cin>>num2;
cout<<” Numbers before swapping:  “<<endl;
cout<<”1. First Number =”<<num1<<endl;
cout<<”2. Second Number =”<<num2<<endl;
cout<<”\n”; //insert blank line
swap=num1; //assign value of num1 to swap 
num1=num2; //replace num1 with num2 value
num2=swap;
cout<<” Numbers after swapping:  “<<endl;
cout<<”1. First Number =”<<num1<<endl;
cout<<”2. Second Number =”<<num2<<endl;
 return 0;
}

The output screen shown in Fig. 12.1 shows the values of each number before and 
after swapping:

Fig. 12.1: Sequence control structure

Activity 12.1: Sequence Control Structure
Consider the following programming problem: 
Three integer values 50, 78, and 45 are to be placed in the three variables namely 
max, mid, and min. Write a sequential program that swaps the three numbers to 
display them in ascending order.

12.2  Selection Control Structure
Situations arise whereby a program need to carry out a logical test, and then take an 
alternative action depending on the outcome of Boolean test.  A Boolean test is an 
expression that uses relational operators; like = (equal to), > (greater than), < (less 
than), >= (greater than or equal to) and <= (less than or equal to) and three logical 
operators namely AND, OR and NOT. For example, consider a program to test if x 
is greater than 20 (x > 20). In such a case, if a user enters a value of x, it is compared 
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against 20 and the program returns true or false depending on the outcome. Generally, 
C++ supports four types of selection control statements that includes if, if... else, 
nested if, and switch. 

12.2.1   The if control statement
The if selection is a control statement that performs an action if the condition is true,  
or skips the action if the condition is false. This conditional logic can be implemented 
in C++ using the general syntax on the left. This general syntax is an implementation 
of flowchart section shown on the right.

false

statements

test 
condition?

true

if (condition) { 
  Statement
}

For example, suppose the school administration decides to reward students whose 
examination score is 80% and above. This logic of if  selection can be implemented 
in C++ using the following syntax in which the condition to test if score is greater 
or equal to 80 is enclosed in parentheses.
If (score>=80){

cout <<“Reward<endl;
}

To further demonstrate how the if ... selection works, the following program prompts 
the user to enter a score. Once the statement is encountered, the score is compared 
against 80 in the boolean expression (score >=80). If score is above 0, the program 
prints Excellent otherwise nothing happens. 

	 #include <iostream>
using namespace std;
int main() {
   int score;  
   cout << “Enter mean score:”;   
   cin>>score;  
   if (score>= 80) {
     cout<<”Excellent\n”;
   } //end if
return 0;
} 
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Fig 12.2 shows the output screen after running the program 

Fig. 12.2: Sample output from if selection

Activity 12.2: if selection statement
Using C++, write a program that prompts a user to enter a student’s mean score in 
Computer Science. If the score is above 50%, the program should display “Pass”.

12.2.2  The if… else selection
The if…else selection is conditional logic that specifies the action to be performed 
if the condition is true, or an alternative the action is false. In C++, if...else selection 
can be represented using the general syntax on the left. This general syntax is an 
implementation of flowchart segment shown the right.
							       example

	

false

statement1

test 
condition?

true
statement2

if (condition) { 
  Statement1
}
else {
  Statement2
}

The following program  demonstrates use of if..else by modifying the  previous 
program of rewarding students. If the score is above 80%, the program displays 
“Reward” otherwise, the message “No reward” is displayed.  

#include <iostream>
using namespace std;
int main() {
int score;  
cout << “Enter mean score:”;   
cin >> score;  
if (score >= 80) {
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 cout << “Reward\n”;
} //end if
else {
 cout << “No reward\n”;
} //end else
return 0;
} //end main

Fig. 12.3 is a sample display when the program is run.

Fig. 12.3: If else statement output

Activity 12.3: if ... else selection statement
Translate the pseudocode below into a C++ program. The program should give to the 
user an interface where to enter two integers X and Y, the program then divide X by 
Y. The program then divides X by Y. To avoid division by zero error, if the value of 
y is 0, the program should display an error message “Sorry: cannot divide by zero”.   

BEGIN
  PRINT “Enter 2 numbers X and Y”
  READ x, y
	 IF y = 0 THEN
	    PRINT “Error : Division by zero”
	 ELSE
	   result = x/y
	    PRINT X, Y, Quotient
	 END IF
END

12.2.3  Nested if..else control statement
The nested if…else selection is a conditional logic that tests for multiple alternatives 
by placing if…else statements within another if…else statement. The general syntax 
of nested if statement can be expressed as shown on the left. This an implementation 
of a flowchart segment shown on the right.
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true

statement3

test 
condition?

false

statement2

true
test 

condition?

false

statement2

if (condition) { 
  Statement1
}
else if (condition) {
  Statement2
}
else {
  Statement3
}

For example, the following program uses compound conditional logic in nested if 
selection to assign grade depending on average mark entered by the user. 

/* program used nested if to assigns grade */
#include <iostream>
using namespace std;
int main() {
int average; char grade;
cout << “Enter examination score:”;
cin>>average;           
if ((average >= 80) && (average <= 100)){

    grade = ‘A’;  
  }
  else if ((average >= 70) && (average <= 79)){
    grade = ‘B’; 
  }
  else if ((average >= 60) && (average <= 69)){
    grade = ‘C’;  
  }
  else if ((average >= 50) && (average <= 59)){
    grade = ‘D’;  
  }
  else {
    grade = ‘E’;  
  }
   cout << “You scored:”<< grade<<endl; 
   return 0;
 }

Fig. 12.4 shows a sample output of grade assigned once the user enters 67 as the score.
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Fig. 12.4: Sample output from nested if selection

Activity 12.4: Nested if selection statement
In athletics, runners are awarded medals depending on position as follows:  position 
1: gold;  position 2: silver and position 3: bronze. The rest of the runners are not 
awarded any medal but receives appreciation message saying “Thank you for your 
participation”. Using nested if...else statements, write a C++ program that determines 
the medal to be awarded to runners depending on time each athlete touches the finish 
line.

12.2.4  Switch... case selection
Similar to nested if selection, switch... case control statement is used to choose from 
several alternatives. Within the switch are actions (cases) associated with a constant 
value that must be evaluated before the statements within each case are executed. 
The syntax of the switch -- case selection is shown below and is demonstrated using 
the flow chart next to it:

switch (condition) {
   case constant1:
   statements-1;
   break;
   case constant2:
   statements-2;
   break;
   .
   .
  default:
  default statements;
} 

Flow chartGeneral Syntax

true
case A comment=Excellent 

comment=Invalid grade 

true
case A comment=Excellent 

grade

The switch in the first line is a reserved word that evaluates the condition in the 
parenthesis. For example, in:
	 switch (grade);
If the value is equivalent to constant case ‘A’, the program evaluates the statement  
under case A and exits. If the grade value happens to be ‘B’ the next case is evaluated. 
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If no block under case  evaluates to true, the statements following default i.e. “Invalid 
grade” is executed. The following is a sample implementation of switch selection  
that assigns comment based on grade obtained. 

#include <iostream>
using namespace std;
int main() {
char grade; 
string Comment; 
cout <<”Enter Grade\n”; cin>>grade;  
switch (grade) {  
 case ‘A’: 
 Comment=”Excellent!”;
 break; 
 case ‘B’: 
 Comment=”Good”;  
 break;
 case ‘C’: 
 Comment= “Fair”;  
 break;
 case’D’: 
 Comment= “Poor”;  
 break; 
 case ‘E’: 
 Comment= “Fail”;  
 break;
default:
 Comment= “Invalid grade”; 
 break; 
}       
 cout<<”Remark “<< Comment<<endl;
return 0; 
}

The output screen from the program is shown in Fig. 12.5 below.

Fig. 12.5: Switch...case selection
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Activity 12.5: Switch selection statement

Write a C++ program that assign medals to athletes based on the following conditions;
1.	 If position 1, award Gold
2. 	 If position 2, award Silver
3.	 If position 3, award Brown 
4.	 If the position is not 1,2 and 3, display “no award”

Assessment Exercise 12.1
1.	 Define the term selection in relation to program control structures.
2.	 State four types of selection control statements used in C++.
3.	 Differentiate between nested if and switch selection statements.
4.	 In what circumstance does selection depend on decision?
5.	 List three factors you would consider when choosing selection controls statement  

in C++.
6.	 Write a program that would enable the user to enter student marks in three 

subjects. The program should calculate mean marks and determine whether the 
student has passed if the pass mark is 50%.

12.3  Looping Control Statements 
If a programming language does not provide means of repeating execution of program 
statements, programmers would be required to state every action in sequence, which 
is a waste of time and memory space. Primarily, C++ provides three types of looping 
control statements: while, do... while, and for. 
The while and for control statements are pretest types of loop because they test the 
condition before executing statements within the zero or more times. On the other 
hand, the do ... while loop is a post-test loop that executes the body of the loop at 
least once before testing the condition. Apart from the three control statements, C++ 
also supports a special  kind of loop known as recursion discussed in the next unit 
and recursive functions. 

Activity 12.6: Looping control structure
Assume that the school administration requires you to write a program that calculates 
cumulative sum and average score of five students. To calculate the sum, the program 
repeatedly reads each student mark, and finally calculates average once the score of 
the last student is entered. Design an algorithm for solving the problem, and then 
implement it using C++ language.

12.3.1  The while loop
The while loop is used if a condition has to be met before the statements within
the loop are executed. Therefore, this type of loop uses a pre-test condition to 



229

Control Statements in C++
determine if whether are to be executed zero or more times. In general, the while 
loop can be represented as follows:

	 while (x<5){
  x = x + 1;
}

Example
while(condition){
	 statements;	
}

General

The following program executes statements in the while loop if the value entered by 
the user is less than one. For example, if the number is 10, the list is decremented by 
1 as long as the condition (n>0) remains true. The algorithm of the program can be 
represented using a flow chart as shown next to the program code. 

#include <iostream>
using namespace std;
int main () {
int number ;
cout << “Enter largest number:”;
cin >> number;
while (number >0) {
  cout <<number <<endl;
  number--;
}
cout << “Fire!\n”;
return 0;
}

number=number-1

number

Start

number>0 number

Fire!

Stop

true

false

Program flow chart

If the user enters 5 as the largest number, the sample output is shown in Fig. 12.6.

Fig. 12.6: While loop: Writing down

Consider a microfinance known as TWIYUBAKE Savings Society that pays 5% 
bonus on shares exceeding 100,000, and 3% on shares above 50,000. However, no 
bonus is paid if a member has shares below 50,000. The program below may be used 
to compute bonus for fifteen members.
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#include <iostream>
using namespace std;
 int main() {
 int shares, count; 
 double bonus; 
 double deposit, total;
 count = 0; 
 while (count<3) {                 
  cout << “Enter member’s shares: “;  
  cin >> shares;                  
  if (shares > 100000) {  //calculate bonus
    bonus = shares * 0.05;   
  }
  else if (shares >=10000) {
   	 bonus = shares * 0.03;  
  }
  else {
    bonus = shares * 0.00;  
  }
   cout<< “Your Bonus is:” <<bonus<< endl;
   count = count+1;
 } //end while loop
 return 0;
}

The sample output shown in Fig. 12.7 demonstrates the behaviour of the program 
once the user enters 80000,7800 and 12000 as shares for three members.

Fig. 12.7: While loop: Computing bonus
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12.3.2  The do... while Loop
The do ...while loop is similar to while loop, only that the statements in the body 
of the loop are  executed at least once. This is because the condition is tested after 
execution of the statements, granting at least one execution of statement even if is 
the condition is false. The general syntax of do...while loop is as follows:

do{	
  statements;	
} while(condition);

Example
do {
	 cout<< “Genocide Never 
Again!”;
} while (index <5);

The following program executes statements within the do ...while loop at least once 
even if the value entered by the user is less than zero. If the number entered is 10, 
the list is decremented by 1 as long as the condition (n>0) remains true.

#include <iostream>
using namespace std;
int main () {
int number ;
cout << “Enter largest number:”;
cin >> number;
do { //looping construct starts here
  cout <<number <<endl;
  number--;
}
while (number >0); //condition tested here 
cout << “Fire!\n”;
return 0;
}
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The following flowchart shows graphical representation of an algorithm used to 
create the program:

number=number-1

number

Start

number>0

number

Fire!

Stop

true

false

Fig. 12.8 shows a sample output after the user enters 7 as the largest number. Note 
that the number is decremented after every loop to 1 when the alert Fire is printed!

Fig. 12.8: Do while loop output

To demonstrate further how the do...while works, consider a real case in which  gross 
salary of employees of Kigali Bookshop is based on basic salary, bonus, experience 
and monthly sales as follows:
(a)	 Employees who have worked for the company for more than 10 years receive 

additional pay of 10%.
(b)	 Monthly bonus is at rate based on monthly sales worth 250,000 as outlined in 

the following table:
Monthly sales Bonus Rate (%)
Above 500 000 15
Between 250 000 and 500 000 10
Below 250 000 5
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The following is  the  program implemented using C++ to calculate each employee’s gross 
salary depending on years of experience and sales.

#include <iostream>
using namespace std;
int main() {
double sales,basic_salary, gross_pay, bonus, goodwill;
double experience_rate = 0.1;
int experience;
int count = 0; //initialize count to zero
do {     
   cout << “Enter work experience:”;  
   cin >> experience;               
   cout << “Enter  basic salary: “;  
   cin >> basic_salary; 
   cout << “Enter monthly sales: “;  
   cin >> sales; 
if (experience > 10) { //if experience is over 10 years
  if (sales> 500000) {
    bonus = sales * 0.15;
    goodwill = basic_salary * experience_rate;
    gross_pay = basic_salary + bonus + goodwill;
   }	
  else if (sales >= 250000) {
    bonus = sales * 0.10;
    goodwill = basic_salary * experience_rate;
    gross_pay = basic_salary + bonus + goodwill;
   }	 
 else {
    bonus = sales * 0.05;
    goodwill = basic_salary * experience_rate;
    gross_pay = basic_salary + bonus + goodwill;
   }		
}
else {  //if experience is less than 10 years
if (sales> 500000) {
    bonus = sales * 0.15;
    gross_pay = basic_salary + bonus;
   }	
  else if (sales >= 250000) {
    bonus = sales * 0.10;
    gross_pay = basic_salary + bonus;
   }	 
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 else {
    bonus = sales * 0.05;
    gross_pay = basic_salary + bonus;
   }		
}
cout << “Your  bonus is:”<<bonus<<endl;
cout << “Gross salary is:”<<gross_pay<< endl; 
count++; 
}
while (count < 3);
return 0;
}

Fig 12.9 shows the output from the program. Note that to get the output, nested if 
has also been used to test the years of experience and bonus given.

Fig. 12.9: do...while loop: bonus payment

12.3.3  The for Loop
The for loop is designed to perform a repetitive action with a counter that is initialised 
and increased after each iteration. The for --loop is similar that of the while loop 
except that the incrementing or decrementing of the counter is done within the for 
statements as follows: 
	 for(initialization; condition; increment){
		  statements;
	 }
For example, the following C++ code snippet is for a program that displays numbers 
from 0 to 10; 
	 for(int index=0; index<=10; index++){
	    cout<< index <<endl;
	 }
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The code segments works as follows: 
1.	 Declares and initialises index of integer type to 0. Most often, a control can be  

a single character like i or x. 
2.	 Sets a boolean condition to be checked e.g. index <=10. If the value returned 

is true, execution enters into the body of the loop, otherwise the program skips 
the loop.

3.	 Executes the statements within the loop. This can be either a single or a block 
of statement enclosed in braces { }.

4.	 Increments the index by 1 (index ++) and tests the condition again before entering 
the loop. If the value of index is greater than 10, the program exits the loop.

The following program demonstrates how to use the for loop. The program lists 
numbers 0 to 10, followed by the message “Fire!”.

#include <iostream>
using namespace std;
int main () {
for (int count=1; count <= 10; count++ 
) {
    cout<<count<<endl; //display 1 to 10
    cout<< "Fire!"<<endl;
 } //end for
return 0;
}

The for loop output shown in Fig. 12.10 shows how the value of index is incremented 
and then printed on the screen.

Fig. 12.10: Program output for loop
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A for loop can also be used to count downwards from the upper limit to the lower 
limit using the syntax:
	 for(initialization; condition; decrement){
		  statements;
	 }
For example, in the previous program, the upper limit 10 can be tested against the 
lower limit 1 print number in descending order using the following statements.
	 for(index=10; index>=1, index--)
	    cout<<index<<endl;
	 {
	    statements;
	 }

12.3.4  Nested Loops
A loop inside another loop is known as nested loop. In C++, you can insert any type 
of loop inside the body of another loop. For example, you can insert a for, while or 
do-while loop inside another for loop as shown in the program segment below:

In this case, the inner loop is executed for every execution of the outer loop. The 
program below accepts a character as input, formats the characters into rows and 
columns and then displays the output as shown in Fig. 12.11. 
#include <iostream>
using namespace std;
int main(){
  int rows, cols;
  char alphanum;
  cout<<”Enter number of rows:”;
  cin>>rows;
  cout<<”Enter number of columns:”;
  cin>>cols;
  cout<<”Enter a letter or number:”;
  cin>>alphanum;
  for (int i=0;i<rows; i++){
    for(int j = 0;j<cols;j++){
      cout<<alphanum<<”\t”; 
    }
  cout<<”\n”; 
  }//end outer for
return 0;
}//end main

for (int i=0;i<rows; i++){
  for(int j = 0;j<cols;j++)
    cout<<letter;
cout<<"\n";
}//end outer for

true

i<rows i=i+1

true

j<cols

rows,cols,alphanum

j=j+1

i=0

alphanum

j=0

Start

Stop

false

false
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Fig. 12.11 below shows a sample output from the program when the user keys in 4 
rows, 4 columns and a character R as input.

Fig. 12.11: formatted output ussing nested loop

Assessment Exercise 12.2
1.	 Define the term iteration control statements as used in structured programming. 
2.	 State three types of looping control statements used in C++ programming.
3.	 Differentiate between while and do-while looping statements.
4.	 List three advantages of looping using looping control over sequential flow of 

control.
5.	 Write a sample C++ code segment that demonstrates implementation of the 

following control structures:
(a)	 Do...While.		 (b)	 For loop.

6.	 Write a program that would be used to display odd integers between 1 and 200. 

12.4  Jump Control Statements
Sometimes it is desirable to exit or skip some statement inside a selection or loop 
construct. This is achieved in C++ by use of jump statements such as break, continue, 
goto, and exit(). 

12.4.1  The break statement
The break statement is a keyword used in the while, for, do…while and switch 
control statements to cause immediate exit from the body of the loop or selection. 
For example, once a break statement is encountered in the following loop,  control 
is transferred to immediate statement following the loop: 
int main(){
int count;
for (count = 1; count <= 10; ++count ) {
 cout << count << “ , “; 
 if ( count == 5 ) 
   break; // skip count if its 5
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 } //end for loop
cout << “The loop exits at:”<<count<<endl;
 return 0;
} //end main

Fig. 12.12 shows how the break statement inside the if conditional logic forces the 
program to exit the loop once 5 is encountered.

Fig. 12.12: Break jump

Activity 12.7: Looping control statements
Write a C++ for a program used to find sum and average of twenty positive integers 
entered by user.  If the input is negative, the program should exit from the loop and 
display the cumulative and average.

12.4.2  The continue statement
The Continue statement is used in repetition statements to cause the program to 
skip the remaining statements in the body of the loop to test the condition. The only 
common thing between the break and continue is that both use if selection to specify 
the jump condition. For example, the program below prints values between one and 
ten except 5:  

#include <iostream>
using namespace std;
int main(){
int missed;
for (int count = 1; count <= 10; ++count ) {
  if ( count == 5 ) {
    missed = count;
    continue; // skip count if it is 5
  } //end if
cout << count << “, “; //display the list
} //end for
cout << “The loop skips:”<<missed<<endl;
return 0;

} //end main 
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Fig. 12.14 shows a simple output in which 5 is skipped in the list. This is because 
the loop skips to test the condition even if 5 is encountered.

Fig. 12.14: Continue jump

12.4.3  The goto Statement
The goto statement was used in early days of programming to specify the line the 
program should jump to. Like many structured programming languages, C++ sparingly 
uses goto for transfer of control.  A goto jump in C++ is accomplished by writing the 
goto reserved word followed by the label of destination statement. A label is just a 
name followed by a colon (:) as follows:
 

To demonstrate how the goto statement works, the following program segment uses 
the goto keyword and if selection to implement a loop. To start with, the initial value 
of index (0) is tested against five (5). The condition causes the goto statement to 
jump to the label or exit the selection construct if the value of index is 5. 

#include <iostream>
use namespace std;
int main(){
 int index = 0; 
 label: index ++; //increment index
 cout<<”Current index is:”<<index<<endl;
 if(index < 5){
 goto label; //jump to label
}
cout<< “Last index is:”<<index<<endl;
return 0;
}

badloop: index++
if (index < 5){
  goto badloop;
}
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Fig. 12.13 shows a sample output from the program. Note that value of index is 
incremented by the statement index++

Fig. 12.13: goto jump in C++
Because a goto statements can cause jumps to any location in your program, 
indiscriminate use of the statement can be a source of program bugs that may be 
hard to debug. Our advice is to use goto when absolutely necessary or completely 
avoid using it! 

12.4.4  Exit( ) Statement
The exit() statement is an in-built function in C++ used to terminate a loop or 
program execution prematurely. For example, exit(1) statement in the following 
program causes the program to terminate before the statement “You’ll never 
see Me!” is displayed:

#include <iostream>
using namespace std;
int main(){
  cout<<”This program will Close Now\n”;
  exit(1); //forced premature exit 
  cout<<”You’ll never see Me!”;
return 0;
}//end main

Fig. 12.14 shows a sample output from the program in which the statement following 
the exit() statement is never displayed!

 

Fig. 12.14: Exit junp statement
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Activity 12.8: Break, continue and exit()
1.	 Write a C++ program that tests if the given number is prime number. The logic 

should use a loop and break statements to test the use input.
2.	 Write a program that accepts numbers starting from zero. If the number is 

less than zero, the program should print an error message and stop reading the 
numbers. Otherwise, if the number is greater than 100, the program ignores the 
number and executes the next iteration. 

3.	  Write a program that accepts characters or special symbols as input and formats 
that output as a pattern such as shown below:

Assessment Exercise 12.3

1.	 Explain three types of jump control statement used to exit from a loop or selection 
statement.

2.	 Explain why it is not good programming practice to use the goto control 
statement.

3.	 Differentiate between break and continue statements.
4.	 Explain what happens when an exit () statement is used in a program.
5.	 Identify two circumstances in which the exit  () statement may be used.
6.	 Write a program to demonstrate the use of continue and go to jump statements.

	

Unit Test 12
1.	 Differentiate between if, and if..else statements in C++.
2.	 Write a sample program showing the general flow of the following control 

structures:
(a)	 Nested for.			   (b)	 do ...while.

3.	 Using a while loop, write a C++ program that would be used to display 50 
numbers in descending order.

4.	 Write a program that would enable the user to enter student marks. The program should 
then determine and display the grade based on grading criteria used by your school.
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5.	 Write a program in C++ that prompts for n numbers, accumulate the sum and then 
computes the average. The program should display sum and average formatted to 2 
decimal places.

6.	 Write a program that reads temperature in degree celsius at least once a day in every 
week. The computer should convert recorded values into Fahrenheit and then calculate 
the average weekly temperature.

7.	 Nkosha deposited 2 million FRW in a bank at a fixed rate of 8% per annum for a period 
of five years. Write a program that calculates and outputs principal amount and interest 
for a period of seven years. The program should display amount rounded to nearest 
whole numbers

8.	 Uwera took a loan of FRW 200,000 from a commercial bank at 12% interest payable 
in four years. Write a program that would keeps track of monthly repayments, and 
interest after four years. The program should display amount payable in each year.

9.	 Although the goto statement is an obsolete control in modern programming, the 
statement is sparingly used in some programming languages. Explain circumstances 
that necessitate its use in C++ programming. 

10.	 Study and give the output of the following program.
#include <iostream>
using namespace std;
int main() {
   int size = 8;
   for (int row = 1; row <= size; ++row) {     
      for (int col = 1; col <= size; ++col) { 
         cout << “# “;
   }
   cout << endl;   
   }
   return 0;
} //end main
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Key Unit Competency
By the end of the unit, you should be able to define and use functions in C++ program.

Unit Outline
•	 Fundamentals of C++ Functions.
•	 Types of functions.
•	 User-defined functions.
•	 Function declaration. 
•	 Recursive functions

Introduction
Structured programming employs a top-down design approach in which the overall 
program is broken down into separate units called modules, procedures or functions. 
In the previous unit, we have demonstrated how C++ implements structured 
programming using structures called control statements within a function called main. 
In this unit, we demonstrate how a program can further be structured to more than one 
functions. To start with, we review basic concepts of modular programming, followed 
by detailed examination of library and user-defined functions. Finally, we demonstrate 
how C++ supports recursive functions inherent in procedural programming languages. 

13.1  Fundamentals of C++ Functions
Top-down approach in structured programming emphasizes on breaking down a 
program into smaller manageable components known as modules, procedures or 
functions. In C++, the smallest component having independent functionality is 
known as a function. Every C++ program has at least one function called main ( ) 
through which other functions interact with each other directly or indirectly. This 
interaction is made possible through function calls and parameter passing  discussed 
later in this unit.

13.1.1  Features of C++ Functions 
Like in other structured programming languages, the following are characteristics 
of C++ functions:
•	 A function is a complete sub-program in itself that may contain input, processing 

and output logic.
•	 A function is designed to perform a well defined task.
•	 A function can be compiled, tested and debugged separately without the 

intervention of other functions.

FUNCTIONS IN C++ 
PROGRAMMINGUnit 13
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•	 A function has only one entry and one exit point.
•	 	A function can interact with other functions using a mechanism known as function 

call and parameter passing.
•	 A function is designed in such a manner that it can be used with different programs 

or software system.
•	 The calling function is suspended during the execution of the called function. 

This implies that there is only one function in execution at any given time.
•	 Control is always returned to the caller when the function execution terminates.

13.1.2  Benefits of using Function 
Structured i:e modular programs have several benefits over non-modular programs 
(monolithic). Some of these benefits include:
•	 A structured program is easier to understand and test because it is made up of 

smaller manageable sub-programs than monolithic programs.
•	 It is easier to modify a structured program by adding or replacing some functions 

without affecting the entire program.
•	 Programmers productivity is increased, because each program function can be 

developed separately by several programmers.
•	 Structured approach to designing programs enhance the readability of a program.
•	 Functions can be saved as library functions to be used in other programs hence 

saving development time and cost.

13.1.3  Limitations of using Functions
Although benefits of structured programming outways those of monolithic 
programming, the following are disadvantages associated with this approach:
•	 Structured programs need more memory space and extra time for execution. 

Because some functions repeat the task performed by other functions.
•	 Integration of various functions into a single program may be difficult because 

different people working on different modules may not use the same style.
•	 Testing and debugging of separate functions may be time consuming, thus reducing 

efficiency of a program.
•	 Global sharing of data by multiple functions is dangerous because  one function 

can modify a global variable in a way that is invisible to another function. 

13.2  Types of Functions
Functions may be classified into two categories namely: Library or (built-in)functions 
and user-defined functions. Library function are compiled and put in C++ library to 
simplify programming task while user-defined function are  the functions that we write 
to create a modular program. 

13.2.1  Library functions
So far, we have been writing programs by first including (importing) functions from 
C++ Standard Library. C++ Standard Library provides a collection of predefined 
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functions for common input and output manipulation, calculations, error checking 
and many other useful operations. To use a library function, we first include its 
header file, then use a function that passes list of arguments from the calling portion 
of the program. For example, to find the square root of a number, we use square root 
function sqrt() as follows:
	 root = sqrt(16); 

The function sqrt() evaluates the square root of 16 and returns 4 which is then assigned 
to the root. In this section, we demonstrate how to use  mathematical, string and 
character manipulation functions.   

13.2.1.1 Math Functions
The C++ Library provides a collection of Math functions used to perform mathematical 
and trigonometric computations. For example, to  raise 5 to power 3, we use the pow() 
function as follows: 
	 power = pow(5,3);//returns 125

Table 13.1 enumerates frequently used functions that require inclusion or importing  
of <cmath> or <math.h> header file using #include directive.

Function Description Example

ceil(x) rounds x to the smallest integer ceil(9.2) is 10.0. ceil (.9.8) is .9.0

cos(x) cosine of x (x in radians) cos(0.0) is 1.0

expl(x) exponential function exp(1.0) is 2.718282

fabs(x) absolute value of x fabs(5.0) is 5.0. fabs(.8.76) is 8.76

floor(x) rounds x to the largest integer not greater 
than x

floor (9.2) is 9.0. floor(.9.8) is 10.0

fmod(x,y) remainder of x/y as a floating point fmod(2.6. 1.2) is 0.2

log(x) natural logarithm of x (base e) log(2.718282) is 1.0

log10(x) logarithm of x (base 10) log10(100.0) is 2.0

pow(x,y) x raised to power y (x,y) pow(2.7) is 128

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0

sqrt(x) square root of x (where x is a non negative 
value)

sqrt(9.0) is 3.0

tan(x) tangent of x (x in radians) tan(0.0) is 0

Table 13.1: Math library functions
The program below uses two functions i.e. sqrt() and pow() to calculate hypotenuse 
of a right angled triangle: using the following expression:

a2 + b2hypo =
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#include <iostream>
#include <cmath>
using namespace std;
int main(){
int a, b;   //declare sides of triangle
double hyp;   //declare hypotenuse 
cout << “Enter first side (a) :”;// input message
cin >> a; // read a from keyboard
cout << “Enter second side (b):”;
cin >> b; // read b from keyboard
hyp = sqrt((a * a) + (b * b)); //compute hyp
cout << “Hypotenuse is:”<< hyp << endl;
return 0;
}

The illustration of Fig 13.1 shows the output after running the program.

Fig. 13.1: maths function program output
NB:  To use the sqrt() function in the assignment statement, you must include <math> 
preprocessor directive as shown in the program.

13.2.1.2  Character Functions
Although a computer is a numerical machine, most often, data entered into a computer 
consist of numbers, characters and strings. The underlying fact is that characters 
are treated as integers. The C++ Library has in-built functions used to manipulate 
characters. The functions can be  accessed by including <cctype>  header file. For 
example, to  convert a character c from  uppercase to lower case, we use the following 
statement: 

For example, the program below uses tolower() function to convert a character from 
uppercase to lowercase.

#include <iostream>
#include <cctype>
using namespace std;

letter = tolower(c)
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int main(){
char letter, small;     
cout << “Enter letters A-Z in uppercase:”;
cin >> letter; // read a from keyboard
small = tolower(letter);
cout << letter<<”lowercase is:”<<small<< endl;
return 0;
}
Fig. 13.2 shows a sample output once the user enters H as the input. The character 
is converted to uppercase. 

Fig. 13.2: Character functions sample output

Table 13.2 below gives a summary of frequently used character manipulation functions 
accessible by including <cctype> header file. 

Function Description Example

isdigit(c) Check whether c is a numeric digit isdigit(‘5’)//returns 1

isalpha(c) Check whether c is a letter isalpha(‘5’)//returns 0

isupper(c) Check whether c is in uppercase isupper(‘x’)//returns 0

tolower(c) Converts c to lowercase tolower(‘R’)//returns r

toupper(c) Converts c to uppercase toupper(‘r’)//returns R

Table 13.2: Character library functions
The following program demonstrates how digital() and alpha() functions are used to 
test whether the user input is a letter or a number.

#include <iostream>
using namespace std;
int main(){
char grade;     
cout << “Enter letters or number:”;
cin >> grade; // read a from keyboard
if (isdigit(grade)){
 cout<<”The entry”<<grade<<”is number”<<endl;
}
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else if(isalpha(grade)){
 cout<<”The entry grade is”<<grade<<endl;
}
else {
 cout<<grade<<”may be a symbol”<<endl;   
}
return 0;
}
The output after entering a letter and a numeric value is shown in Fig.13.3 below:

Fig. 13.3:  Sample output from character functions

13.2.1.3  String Functions
The string-handling library provides many useful functions for manipulating string 
data, comparing strings, searching strings for characters and substrings. To use 
the string manipulation functions, you must include the <cstring> header file.  For 
example, the following statement returns the number of characters in “My House” 
string:

#include <iostream>

using namespace std;

int main(){

int count=0;

count = strlen(“My House”);//

cout <<”Number of characters are: “<<count<<endl;

return 0;

}

The sample output shown in Fig. 13.4 demonstrates how strlen() counts the number of 
characters in My House string.
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Fig. 13.4: Sample output from strong functions
NB: The output shows that the number of characters are 8 because the space between 
My and House is also counted as a character.

Table 13.3 below presents some common string manipulation functions supported by 
C++.

Function Description Example

strcat(c) Concatenates two springs strcat(x,y) append y to x 

strcmp(c) Compares two strings strcmp(“he”,“se”) //return 0

strlen () Counts the number of non-whitespace 
characters in a string

strlen(‘him’)// returns 3

strcpy() Copies the second string to first string strcpy(y,x); copy x to y

Table 13.3: String library functions

Activity 13.1: Library functions
1.	 Identify at least ten math library functions and use an example to explain how 

each function works.
2.	 Bisangwa took a loan of 400 000 FRW from a local bank at annual interest rate 

of 12% . Assuming the loan should be paid in 4 years time, write a C++ program 
that makes use of library functions to compute monthly loan repayment.

13.2.2  User-defined Functions
We create user-defined functions to modularize a program or make it available in 
C++ Library for use by other programmers. Creating user-defined functions require 
that you declare the function name, return type, and list of arguments. After the 
declaration, you can then define the function body by enclosing its statements in { 
} braces as follows:  

	 type fun_name(arg1,arg2,...){ 

		  statements 

	 }
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For example:

int fun_add(int a, int b){

int sum;

sum =x +y;

return sum;

}

Explanation

•	 In the general syntax, type is the data type to be returned by the function. For 
example, in our previous examples, we have seen that main() returns int type.

•	 func_name is the identifier by which it will be possible to call the function. For 
example, main() with brackets indicates that it is a function. 

•	 arg-list is a list of parameters also known as arguments that serves as placeholders 
for actual data to be received from another function. Arguments are separated 
by commas, with each comma-separated list consisting of data type followed by 
arguments e.g., int a. In our previous examples, main() with empty parenthesis list 
indicates that it does not receive arguments. 

•	 statements is the function’s body that consists of a block of statements enclosed 
in { } braces. The statements include local variables, executable statements, and 
optional return statement. For example, main has the last statement as “return 0”.

When a function is called by another  function, execution is transferred to the function 
until the return statement or end of function is encountered. To demonstrate how 
functions work, the following program calculates the sum of two numbers received 
from the main function:

/*this program consists of two function:

main and addition */

#include <iostream>

using namespace std;

//addtion function calculates sum 

int addition (int a, int b){

int sum;

sum=a+b;

return sum;

}
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//program execution starts here!

int main (){

int total=0,x=5, y=7;

total = addition (x,y);

cout<< “The sum is:”<<total<<endl;

return 0;

}

Fig. 13.5 shows a sample output from the program. Note that the screen does not 
explicitly show how the function was called.

Fig. 13.5: Sample output from user-defined functions

The following is a brief description about how the above program works:
•	 The execution environment in most cases in an operating system starts by calling 

the main () function. 
•	 The main function has three variables sum, x and y that are initialized to 0, 5 

and 7 respectively. 
•	 The next statement is referred to as function call that transfers control to a function 

named addition. The x and y inside parentheses are called actual arguments 
because they hold assigned values 5 and 7.

•	 The two values of x and y are “sent”, (passed) to a function called addition 
through a process known as “parameter passing”. Note that the data type and 
order in which the values are received should match that of the function call as 
illustrated below:

total = addition (x, y);

int addition (int a, int b); receiving arguments

passing arguments

12 5 7

•	 The control is passed to the addition function, arguments a and b known as formal 
parameters received from main(), i.e., 5 and 7 are assigned to as a and b follows:
int a = 5, int b = 7;

•	 The two values are summed up and assigned to a variable (sum) in the addition 
function as follows:
sum=a+b;//5+7
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•	 The statement return sum returns as a value of 12 and transfers control back to the 
next statement following the function call in the main function. Note that the return 
statement can be a value or an expression that returns a value such as:
return (sum=a+b);

•	 Finally, the main function prints the value received from addition function. Note 
the value has been assigned to total that is specific to main, hence referred to as 
local variable.  

Activity 13.2: User-defined functions
1.	 Study the code snippet shown below and identify the function’s list of parameters, 

return type and the value returned by the maximum function:
	 double maximum( double x, double y, double z ){
	 double maxiValue = x; //assume x is maximum
	 if ( y > maxiValue)
	 maxiValue = y; // make y the new maximum
	 if ( z > maxiValue)
	 maxiValue = z; // make z the new 
	 maximum
	 return maxiValue;
	 } // end function
2.	 Write a complete program in which the maximum function is called flow the 

main ();
3.	 Write a program that computes area of a rectangle in a function called rect_area. 

The rectangle then returns the calculated area to the main function. 

13.3  Function declaration
C++ requires that a function be defined before being called by the main () function 
or any other function. For example, addition function in our previous example comes 
before main. However, if you do not want to fully implement a function, you can 
first declare it and implement it later. To declare a function without implementing 
the body, write the function return type, name and parameter list followed by a 
semicolon at the end of the statement. The portion of a function that includes only 
the function name and list of arguments is called a function signature or prototype. 
For example, the following statement is a sample declaration for a function named 
maximum that takes 3 parameters.

	 double maximum(double x,double y,double z);
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Activity 13.3: Functions declaration
1.	 Explain the purpose of each of the following statements:

(i)	 	void maximum(int,int,int);
(ii)	cout<< maximum(6,7,0);

2.	 Write a program that receives marks for three subjects: Mathematics, Computer  
Science and Physics/Economics. The program should pass received parameters 
to a function called calculator(). Once the calculator() function computes the 
mean score, the value is returned to a grader() function that determines mean 
grade as follows:
•	 80 - 100	 A	
•	 65 - 79	 B
•	 50 - 64	 C	
•	 Below 50	 F

13.3.1 Function Return Type and Arguments
We have seen that declaration of a function consists of  return type, function name and 
a list of parameters. The return type and argument list can be of the following type:
•	 Primary data type – a function can return data types such as int, double, float, 

char and bool.
•	 Complex data types - a function can receive or return composite data structures 

like arrays, records (struct), linked list and string:
•	 Void type – this is a special type, which means a function does not return any value. 

In C++, empty parenthesis also implies that the function takes void argument list. 

13.3.1.1  Functions with arguments and return type
A function can receive at least one argument and return a single value to the caller. 
For example, the following printreport() function takes two parameters of int types, 
computes quotient, and returns a value of double type: 
double printreport(int x,int y){ 
 return = x/y;
}

13.3.1.2  Functions with no arguments and no return type
The keyword void may be used to specify that a function neither receives arguments 
nor returns a value. For example, the printreport() function below does not receive 
arguments and returns void: 
void printreport(void) { 
 int x = 5, y =10;
 cout<<”Quotient is”<<x/y; 
}
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13.3.1.3  Functions with arguments and no return type
A function can receive one or more arguments and return nothing. For example, the 
following printreport() used void to explicitly declare that the function takes two 
arguments but returns void: 
void printreport(int, int) { 
 cout<<”Quotient is”<<x/y; 
}

13.3.1.4  Functions with return type and no arguments
A function that receives nothing can be defined in a manner that it returns a value to 
the caller. For example, the printreport() function below does not receive arguments 
but returns void: 
double printreport(void) { 
 int x = 5, y =10;
 return x/y; 
}

Activity 13.4: Function return type and arguments
1.	 Explain what happens if the return type is not explicitly declared, but the argument 

list is a mixture of types as shown below. 

	 caculator(int x, int y, float z){
   return(x+y+z) 
	 } 

2.	 Modify the calculator program created in Activity 13.5 to include a void function 
named printGrade that prints Average Mark and grade received from the grader() 
function

13.3.2  Scope of Variables and Constants
The scope specifies where a variable and a constant can be referenced in a program. 
Scope of a variable can be either of global or local scope. Global identifiers can 
be referenced throughout a program, while local identifiers can only be referenced 
within the body of a function. Formal parameters are treated as local variables used 
exactly as if they had been declared in the function body. The following program 
demonstrates how to use global and local variables.
#include <iostream>
using namespace std;
const int k =32; //global constant
float cel; //global variable
float Converter(float); //function declaration
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int main(){
float fahr; 
cout<<”Enter temperature in fahrenheit:”;
cin>>fahr;
cel = Converter(fahr);//function call
cout<< “Display temp in celsius:”<<cel<< endl;
} //end main
//function definition 
float Converter(float fer){
cel = ((fer - k) * 5) / 9;
return cel;
} 

Fig. 13.6 below shows the output after the user keys in a value for degress fahrenheit:

Fig. 13.6: Scope of variables and constants

Global variables are dangerous because they are shared data hence one function can 
change a variable in a way that is invisible to another function. This sharing can 
cause logic errors due to bugs that are very difficult to find.

13.3.3  Parameter Passing
Parameter passing serves as the communication mechanism between two functions. 
Once a call statement is encountered, the caller function passes actual parameters 
to the function being called. For example, the program below has a call statement;
z=addition (x,y) that passes actual parameters 5 and 3 to addition function.
#include<iostream>
using namespace std;
int addition (int a, int b) {
return a+b;
}
int main (){
int x=5, y=3, sum;
sum = addition ( x , y ); //pass copies
cout<<”The total is”<<sum<<endl;
return 0;
}
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The output after running the program is shown in Fig. 13.7 below:

Fig. 13.7: Sample output for parameter passing

In this case, once the values of x and y are passed to addition function, they are 
assigned to a and b.

Activity 13.5: Parameter passing
1.	 Write a function named distance that calculates the distance between two points 

on a cartesian plane (x1, y1) and (x2, y2). All formal parameters  and the return 
value should be of type double.

2.	 Determine whether the following program segments contain errors. For possible 
error(s), explain how it can be corrected. 

	 void printResults( int x, int y ) {
	 cout << “The sum is “ << x + y << ‘\n’;
	 return x + y;

	 }

Assessment Exercise 13.1
1.	 Differentiate between definition prototype and function declaration.
2.	 State five advantages and three disadvantages of using functions.
3.	 State five common characteristics of a function.
4.	 Using Math library functions, write the following equation as a C++ expression: 

y = ax3 + bx2 + cx +d.
5.	 Using examples, explain four functions that you can use to manipulate characters 

and strings.
6.	 Differentiate between void data type and empty parameter list.   
7.	 Differentiate between global and local identifiers. Explain why it is undesirable 

to use global variables.
8.	 Using examples, differentiate between pass-by-value and pass-by-reference as 

used in structured programming.
9.	 Mwiza deposited 400,000 in her savings account. The amount deposited earns 

interest at 3% annually. Write a program that has a function called calculator 
that receives deposit and years from main() to calculate amount and accrued 
interest after n years. Note that interest rate should be global constant of double 
type. 
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13.4  Recursive Functions
Some problems solved recursively are usually those in which you act on data and 
then act on the results the same way. Recursion is the process of repeating items in 
similar manner meaning that a recursive function is a function that calls itself in a 
similar manner. Such functions are useful in solving problems that are recursive in 
nature such as factorial, greatest common divisor (GCD) and fibonacci series. 

Activity 13.6: Recursive functions
1.	 Using your knowledge in Mathematics, demonstrate how you would compute 

factorial of integer numbers like 20!
2.	 Using a tree diagram, demonstrate how you would recursively determine the 

greatest common divisor (GCD) of two numbers, say, 420 and 42.

To demonstrate how recursive functions work. Let’s consider a mathematical problem 
of finding factorial of a non-negative integer n, written as n! In order for the recursion 
to terminate, the iterations must eventually converge to a base case such as 1 in n. For 
example, 5! is the product  of 5 * 4 * 3 * 2 * 1, which terminates at 1 to return 120. 
Omitting the base case, or writing the recursion step incorrectly so that it does not 
converge on the base case, causes “infinite” recursion analogous to infinite loop in a 
looping control structures. The following program implements a recursive function 
called factorial.
#include <iostream>
using namespace std;
long factorial (long n){
if (n > 1)
return (n * factorial (n-1));
else return 1;
}
int main () {
long number;
cout << “Please type a number: “;
cin >> number;
cout<< number << “! = “ <<factorial(number);
return 0;
}

Fig. 13.8 shows a sample output after running the program.

Fig. 13.8: Sample output from recursive function
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Explanation 
1.	 The execution starts with the main function that prompts the user to type a 

number.
2.	 Once the number is entered, the function call factorial(number) in the last cout 

statement transfers control to the factorial function.
3.	 The factorial function receives the parameter and assigns it to n.
4.	 The factorial recursively calls itself in the statement factorial(n-1) until the base 

value -1 is reached.
5.	 The iteration stops and results displayed on the screen.

Let us consider another mathematical problem of generating Fibonacci series. In 
Fibonacci series, the next number is the sum of the previous two Fibonacci numbers 
as shown below:

0,1,1,2,3,5,8,13,21,…

This fibonacci series can be generated and displayed on the screen by the following 
program:
#include<iostream>
using namespace std;
int fibonacci(int n){
    if((n==1)||(n==0))    {
        return(n);
    }
    else {
        return(fibonacci(n-1)+fibonacci(n-2));
    }
}
int main(){
    int n,i=0;
     cout<<”IEnter number of terms for Fibonacci Series:”;
    cin>>n;
    cout<<”The is the Fibonnaci Series”;
    while(i<n) {
    cout<<” “<<fibonacci(i);
    i++;
 }
return 0;
}
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Fig 13.9 shows the output screen of the program that prints a fobinacci series of natual 
numbers 0 to 12.

Fig. 13.9: Fibonacci series using recursive function

13.4.1 Recursion vs iteration
•	 Iteration explicitly uses a repetition structure while recursion achieves repetition 

through repeated function calls. 
•	 Both iteration and recursion involve a termination test: iteration terminates when 

the loop–continuation condition fails; recursion terminates when a base case is 
recognized. 

•	 Iteration with counter-controlled repetition and recursion gradually approach 
termination:

•	 Iteration modifies a counter until the counter assumes a value that makes the 
loop-continuation condition to fail; recursion produces simpler versions of the 
original problem until the base case is reached. 

•	 Both iteration and recursion can occur infinitely: An infinite loop occurs with 
iteration if the loop-continuation test never becomes false; infinite recursion 
occurs if the recursion step does not reduce the problem during each recursive 
call in a manner that converges on the base case.

•	 Unlike iteration, recursive functions can be expensive in terms of processor time 
and memory space. This is because each recursive call causes another copy of 
the function to be created. 

Activity 13.7: Recursive functions
1.	 Implement a modular program for calculating  Fibonacci series for nth term 

received from main() function.
2.	 The greatest common divisors of two natural numbers can be easily determined 

recursively. Write a program for finding GCD of two natural numbers p and q 
using the following function definition:

	 int gcd(int p, int q) {
    if (q == 0)
    return p;
    else
    return Gcd(q, p % q);
	 }  
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Assessment Exercise 13.2
1.	 Define the following terms: 

(a)	 Recursion 
(b)	 Recursive function

2.	 Differentiate between recursion and looping control statement.
3.	 Paul wrote a program that has factorial recursive function. However, after running 

the program, it was not terminating.
(a)	 What type of bug is making the program not to terminate?
(b)	 Advise Paul on how to eliminate the bug.

4.	 Explain why it is not advisable to use recursive functions if a problem can be 
solved using iterations.

5.	 Using an example, explain how a program would recursively find greatest 
common divisor of two natural numbers p and q.

Unit Test 13
1.	 Explain the following concepts as used in C++ programming:

(a)	 Functions  
(b)	 Arguments
(c)	 Parameter passing

2.	 Differentiate between library functions and user-defined functions.
3.	 Demonstrate how you would use library functions to compute volume of a sphere.
4.	 Uwimana wrote a modular program for finding the volume of a cube. Though 

the program was running, the calc_volume function was returning void causing 
unexpected output in the main function.
(a)	 What type of bug is making the program return invalid results?
(b)	 Advise Helen on how to eliminate the bug

5.	 Explain why parameter passing is an important concept in modular programming.
6.	 Global sharing of variables is one of the major reason for paradigm shift to object 

oriented programming. Explain why.
7.	 Write a program that uses recursion to output fibonacci series from the first fifty 

natural numbers. 
8.	 Write a program that reads temperature Celsius in the main function. The 

parameters is passed a function called calc_cel that returns double to a void 
function that displays the value of temperature in degrees Fahrenheit.

9.	 Muhire deposits 20,000 FRW in a bank at an interest rate of 10% per annum. 
At the end of each year, the interest earned is added to the deposit and the new 
amount becomes the deposit for that year. Write menu-driven program that would 
be used to track interest over a period of five years.The program should output 
interest and principal amount accumalated in each year.
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10.	 Study and give the output of the following program.
#include <iostream>
using namespace std;
int result;
int compare(int num1, int num2);
int main () {
 int a = 120;int b = 121;
 result= compare(a, b);
 cout << “The result is: “ << result<<endl;
return 0;
}
int compare (int num1, int num2) {
   if (num1 > num2)
      result = num1;
   else
      result = num2;
   return result; 
}
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Key Unit Competency
By the end of this unit, you should be able to use arrays and strings in a C++ program.

Unit Outline
•	 One-dimensional Arrays.
•	 Creating one-dimensional Arrays.
•	 Accessing Array Elements.
•	 Array of characters

Introduction
This unit builds on earlier concepts on one-dimensional arrays, variables, data types 
and control structures. More specifically, this unit demonstrates how to create and 
manipulate one-dimensional arrays. 
We start by demonstrating how to create and manipulate one-dimensional array of 
numeric elements. Later, we demonstrate how to create one-dimensional array of 
characters also known as strings.

14.1 One-dimensional Array
An array is a series of elements having the same name and data type placed in 
contiguous memory locations. To create an array in C++, you need to consider the 
following:
•	 Type of elements: The elements in an array must be of the same type. Some of the 

valid types stored in an array include primary data types (e.g. int, float, double, 
and char), and compound types such as string.  

•	 Array size: Because arrays occupy space in memory, you must specify the number 
of elements beforehand so that the compiler sets aside enough memory space. 

•	 Dimensions: Arrays can have any number of dimensions although it is likely 
that most of the arrays you create will be of one or two dimensions. To access 
elements in an array,  you must indicate its position using a subscript (index) for 
each of its dimensions.

14.2 Creating One-dimensional Array
In this section, we demonstrate how to create one-dimensional array of ten integers 
named house. The house array is first initialised to 10 values to be stored in each 
element.   

ARRAYS IN C++ 
PROGRAMMINGUnit 14
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#include <iostream>
using namespace std;
int main(){
int house[10] = {165, 150, 219,300,220,450,60,80,55,172};
for (int i = 0; i<10; i++){
cout<< i+1<<”: “<<house[i]<< endl;
}//end for loop
return 0;
}

Fig. 4.1 shows a sample output after running the program. Note that the ten elements 
are listed from 1 to 10.

Fig. 14.1: Array of inlegers sample program output

14.2.1 Declaration of Array

Declaring an array is similar to declaration of simple data types only that square [] 
are used to instruct the computer to reserve enough memory locations to store array 
elements. The general syntax of declaring a one-dimensional array is:

	 type array name[number of elements]; 

Where type refers to data type to be stored in the array, followed by the array name 
and number of elements. For example, the follow array named house stores 10 
elements  of integer type:
	 int house[10]; 

Once you declare house array, the computer sets aside memory locations (addresses) 
for storing ten integer values such as 34,20,45,87,92,21,42,56,12 and 15. 
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Activity 14.1: Declaration of arrays
1.	 Study the following graphical representations of one-dimensional array and 

answer the questions that follow:

POINTS 20 -3 4 12 10 20
INDEX 0 1 2 3 4 5

TEMPERATURE 5.1 -25.9 30.0 200.8 10.90 7.65
INDEX 0 1 2 3 4 5

Table 14.1: Numeric Arrays
(a)	 Determine each array name, data type and number of elements stored in 

each array.
(b)	 Using C++, write declaration statement that sets the array elements to 

appropriate data type.
2.	 A bus company has purchased a computer for its new automated reservations 

system. You are requested to program the new system that assigns seats to 
passengers for each trip. Using one dimensional arrays, design and write a 
program in c++ that assigns 30 seats as an array of integers. The output from 
the program should be the subscript and number, eg: 	

						      1. 	 001
						      2. 	 002
						      3. 	 003
						      ·						      .						      .
					             30.	 030

14.2.2 Initialisation of arrays
Array initialization refers to assigning elements to default values at compile time. In 
C++, elements of an array can be initialised  during array declaration by assigning 
the array to list of comma-separated values enclosed in {}braces. For example, the 
house array in our example initialises the array as follows:  

int house[10]={165,150,219,300,220,450,60,80,55,172};

If there are fewer initialisers than the number of elements, the remaining elements 
are automatically initialised to zero. For example, the elements of the house array 
could have been initialized to zero as follows:
	 int house[10] = {165,150};

The statement initialises the first two element to 165 and 150, and the  remaining 
eight elements are initialised to two values followed by zeros as follows:
	 house[10] = {165,150,0,0,0,0,0,0,0,0};
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It is important to note that, declaration of an array does not automatically initialise 
elements to zero. To automatically initialise all elements to zero, use empty braces 
or initialise at least the first element to zero as follows:
	 int house[10]={0};
If the array size is omitted in the square bracket but elements initialised using 
comma-separated list of initialisers, the compiler assigns the array size enough to 
hold the number of elements in the list. For example, the definition below creates a 
five-element array:
	 int apartment[]={1,2,3,4,5};

Activity 14.2: Initialising an array
1.	 Demonstrate how to initialise an array named product to the following list of  

numbers: 21,32,43,54,65,76,87,88,99,200.
2.	 Explain whether the following array initialisation causes syntax error: 
	 double product[8]={32,27,64,18,95,14};
3.	 Study the program below and explain line-by-line how the program works to 

provide desired output.
	 #include <iostream>
	 using namespace std;
	 int scores[] = {36,25,78,40,55,91};
	 int n,result=0;
	 //use sizeof to determine no. of elements  
	 int size = sizeof(scores)/sizeof(int);
	 int main (){
	 for ( n=0 ; n<size; n++ ){
	 result += scores[n];
	 }
	 cout<<”Sum of”<<size<<”scores is:”;
	 cout<<result<<endl;
	 return 0;
	 }
Compare your output with sample screen shown on Fig. 14.2 below:

Fig. 14.2: Initialised array sum of scores
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14.3 Accessing Array Elements
In one-dimensional arrays, each element can be accessed using subscript which is 
usually an offset of 1 from the number of elements using the following general syntax:
	 name[n-1];
The subscript n-1 is an offset of n elements because in C++, subscripts counts from 
0. For example, to access the fifth element in the house array that has 50 elements, 
use the following syntax: 
	 house[4];
The most convenient way to access multiple elements of an array is to use the for 
loop to be demonstrated later. The reason why for loop is desirable is because the 
number of elements is known beforehand.  

14.3.1 Reading values into Array Elements
To read values into a specific element of an array , use the following syntax:
	 cin>>name[n-1];

The statement uses the cin object to accept user input and stores the value into the 
element specified by n-1 offset. For example, the following statement prompts the 
user to enter  a value that is stored into the fifth element: 
	 cin>>house[4];

Instead of reading one element at a time, you can populate multiple array elements 
using the for loop. For example, to read multiple values into house array, use the for 
loop as follows:   
#include<iostream>
using namespace std;
int main(){
int house[10] = {};
//use for loop to read values into house array
for (int i = 0; i<10; i++){
cout<<”Please enter house No:”<<i+1<<endl;
cin>>house[i];
}//end reading
return 0;
}
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The program shown above populates the 10 elements of the house array as shown 
in Fig. 14.3. 

Fig. 14.3: Reading values into an array
The loop intialises the control variable i to zero and loops until it is nine. The cout 
statement prints the statement “Please enter house no:”, which is followed by i+1 to 
start counting from 1.    

14.3.2 Writing values from Array Elements
Similar to the syntax of reading values into array elements, you can display a single 
value from array using the cout object as follows:
	 cout<<name[n-1]
For example, the following statement may be used to displays the fifth element from 
the house array: 
	 cout<<house[4];
To display multiple values from array elements, use the cout object and the for loop. 
For example, the following for loop displays values from the house array: 
	 for(int i=0; i<10;i++){
  	   cout<<i+1<<”:“<<house[i]<< endl;
	 }

The following program is a modification of the code listing in activity 14.2 to 
demonstrate how to read and write values from the array named house: 
#include<iostream>
using namespace std;
int main(){
int house[10] = {};
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//use for loop to read values into house array
for (int i = 0; i<10; i++){
cout<<”Please enter house No:”<<i+1<<endl;
cin>>house[i];
}//end reading
//use for loop to print house array 
for (int i = 0; i<10; i++){
cout<< i+1<<”: “<<house[i]<< endl;
}//end printing
return 0;
}
Fig. 14.4 shows an illustration of the program after running it. The first part denotes 
the read operation while the second part displays the values.

Fig. 14.4: Sample read and write output from array
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Activity 14.3: Reading and writing array elements
Thirty students were asked to rate the quality of the food in the student cafeteria on a 
scale of 1 to 5 (1=poor, 2=fair, 3=neutral, 4 =good, and 5=excellent). Write a C++ 
program that stores 45 responses into one-dimensional array and give a summary of 
each case in terms of count and percentage.

Assessment Exercise 14.1
1.	 Differentiate between one-dimensional array and multi-dimensional array.
2.	 Declare a one-dimensional array that represents a 99-element floating point array 

called cashflow.
3.	 Assuming the array in 2 above is implemented using C++, what are the first and 

last elements in the array?
4.	 The following is a list of numbers representing customers waiting to board a 

25-seater bus that serve between Huye and Kigali:64, 25,69, 67, 80 and 85. 
(a)	 Define an array named Passenger initialized to false if a seat is empty.
(b)	 Write a sample code that initializes to zero all the elements of Passenger 

array in question 4 above.
(c)	 Assuming the array is implemented in C++, write a program that would be 

used to read and display ticket numbers for 25 elements of fully booked 
bus.

5.	 Write a C++ program  that converts a decimal number to binary form. Store the 
binary digits in an array and correctly displays the binary number.

6.	 Study the following code fragments and identify possible errors.  In each case, 
explain the consequences of not correcting the error(s):

      a. Assume that: int box[ 10 ] = { };
for ( int i = 0; i <= 10; ++i )
box[ i ] = 1;

Assume that: int ax[ 3 ];
cout << ax[ 1 ] << “ “ << ax[ 2 ] << “ “ << ax[ 3 ];

b.
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7.	 Study the following program and give the output produced after running it:
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main() {
const int SIZE =7;
int marks[] = {74, 43, 58, 60, 90, 64, 70};
int sum = 0;
int sum_squared = 0;
double mean, stdDev;
   for (int i = 0; i < SIZE; ++i) {
      sum += marks[i];
      sum_squared += marks[i]*marks[i];
   }
mean = (double)sum/SIZE;
stdDev = sqrt((double)sum_squared/SIZE - mean*mean);
cout << fixed << “Mean is “ << setprecision(2) << mean 
<< endl;
cout << fixed << “Std deviation:” << setprecision(3) << 
stdDev << endl;
return 0;
}//end main

      
8.	 Identify and correct syntax error(s) in the following program.
#include <iostream>
using namespace std;
int main (){
const int SIZE = 5;
int  a[SIZE], b[SIZE],C[SIZE] ;      
for (index = 0; index < MAX; index++)	 {
		  cout << “Enter elements for array [a]: “;
		  cin >>a[index];
	 } 
 for (index = 0; index < MAX_ARRAY; index++){
	 cout << “Enter elements for array [b]: “;
	 cin >>b[index];
	 }
 for (index = 0; index < MAX; index++)	 {
     c[index] = a[index]+ b[index];
}
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 for (index = 0; index < MAX; index++)  {
	 cout << “array a is “ << a[index] << endl;
	 cout << “array b is “ << b[index] << endl;
	 cout << “array c is “ << c[index] << endl;
 }
   return 0;
} //end main

      
14.4 Array of Characters
To easily handle strings, C++ Standard Library implements string data type that is 
very useful in handling strings of characters. Because a string is made up of a group 
of characters, we can also represent them as arrays of char elements using the syntax:
  	 char name[elements];
For example, to declare an array of characters called greetings, use the following 
syntax:
	 char Greeting[10];
It is important to note that an array has few characters elements than its size because 
the last element must store a special character signals end of the string.This special 
character denoted by ‘\0’ (backslash and zero) is called null character. 
The program below shows how to create an array of character named Greeting. 
#include <iostream>
using namespace std;
int main(){
char Greeting[30];
cout << “Greet someone:”;
cin.get(Greeting, 30); //enter 29 characters
cout << “Greetings:”<<Greeting<< endl;
return 0;
}

Fig. 14.5 shows a sample output after running the program:

Fig. 14.5: Array of characters
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The program uses cin and get() function separated by a period to read characters and 
store a string of 29 characters. Note that in this case, the 30th element is reserved for 
the null terminator \0 that denotes the end of a string. 

14.4.1 Initialisation of Strings 
Similar to the syntax of initialising array of numbers, we can initialise an array of 
characters with some predetermined sequence of characters within {} braces as 
follows:

	 char name[elements]={.,.,.,’\0’};

The dots in this case represents comma-separated characters enclosed in single quotes, 
and a null character toward the end. For example, the following definition initialises 
the Greeting array with “hello” string:

	 char Greeting[6]={`H’,`e’,`l’,`l’,`o’,`\0’};

Note that, although Hello string has five characters, the sixth element is used to hold 
`\0’ that signals end of the string. However, instead of initialising an array with 
comma-separated characters in {} braces, you can declare and initializse a string as 
follows:  

	 char Greeting[]=“Hello”;

Note that, the size of Greeting array is determined by “Hello” enclosed in double 
quotes on the right. This type of initialisation does not require use of a null character 
because C++ compiler inserts it automatically.

Activity 14.4: Initialising strings
Study the following graphical representations of one-dimensional array of characters 
and answer the questions that follow:
VALUE Box 50, Kigali Box 30, Butare Box 24, Kibuye Box 7, Cyangugu
INDEX 0 1 2 3

Table 14.2: Array of characters
1.	 Determine the array name, data type and number of valid elements stored in the 

array.
2.	 Using C++, write declaration statement that assigns the array elements to values 

shown in the illustration.

14.4.2 Reading and Displaying Strings 
The cin object consists of special function such as get() used to read a valid sequence 
of null-terminated characters from the input stream. Normally, cout statement and 
string library functions may be used to display a string, substring or characters. Like 
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the Greeting array discussed earlier, the following program declares a string called 
buffer that has a maximum of 79 characters: 
#include <iostream>
using namespace std;
int main(){
char buffer[80];
cout << “Enter a string:”;
cin.get(buffer, 79); //enter 79 characters
cout << “String you typed is:”<<buffer<< endl;
return 0;
}
A sample output after running the program is shown in Fig. 14.6 below

Fig. 14.6: Sample output from string input

Note that the statement; 
	 cin.get(buffer,79);
means that the get() function of cin object takes two parameters, i.e., the array 
and number of characters in the array. The array called buffer declared in line 4 is 
passed in as the first argument while 79 is the second argument that determines the 
maximum number of characters to be read. In this case, it must be 79 to allow for 
the null terminator. In addition to functions associated with cin and cout objects, 
you may also use library functions shown in Table 14.3 below to manipulate strings.  

Function Description Example
strcat( ) Concatenates two strings strcat(x, y) append y to x

strcmp( ) Compares two strings strcmp(“he”,”se”) //return 0

strlen( ) Counts the number of non white space 
characters in a string

strlen(‘him’) //returns 3

strcpy( ) Copies the second string to first string strcpy(y, x); copy x to y

Table 14.3: String library functions
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The program below demonstrates use of the two library function namely strcpy() 
and strlen().
#include <iostream>
#include <cstring>
using namespace std;
int main() {
char String1[] = “Love your neighbour”;
char String2[80]= “Promote Peace”;
cout<< “String2 before copying: “ << String2 << endl;
strcpy(String2,String1);
cout<< “String1 is: “ << String1 << endl;
cout<< “String2 after copying: “ << String2 <<endl;
cout<< “String2 has: “ <<strlen (String2)<< “characters\n”;
return 0;
}
Fig. 14.7 shows a sample output from the program that copies and counts the number 
of characters in a string.

Fig. 14.7: Output from string functions

Explanation
1.	 This program declares and initializes two strings namely String1 and string 2. 

String1 can hold any number of character because the number of elements is 
not defined while String2  can hold a string of 80 characters including the null 
terminator. 

2.	 Once the program is executed, original value of String2, i.e., Promote Peace is 
displayed. The statement strcpy(String2,String1)  replaces the first parameter 
(String2) with e second parameter (String1), hence replacing “Promote Peace” 
with “Love your neighbour”.

3.	 The new value after replacing original String2 with String1 is displayed as shown 
in Fig. 14.8

4.	 The strlen() function returns the total number of character i.e 19 including spaces 
in String2.
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Activity 14.5: String functions
•	 Identify C++ library functions used to manipulate strings such as counting number 

of characters, concatenating and copying.
•	 Write a program that uses string concatenation function to combine greetings 

and your name strings. 

Assessment Exercise 14.2
1.	 Explain the purpose of null character ‘\0’ in regard to array of characters.
2.	 Declare a one-dimensional array of characters that would be used to store names 

of major towns and cities in Rwanda.
3.	 Assuming the array in 2 above is implemented using C++, represent graphically 

how a string “Cyangugu” will be stored in the array of characters.
4.	 The following is a list of numbers representing customers waiting to be served in 

a banks: Ann, Ben,Helen, Paul, Joy and Ken. Create an array named Customers 
initialized using the names.

5.	 Write a  program that would be used in reading and writing the elements into an 
array.

6.	 Differentiate between the following string initialization statements:

Unit Test 14
1.	 Differentiate between array declaration and array initialization.
2.	 Explain at least two reasons that would necessitate the use of for loop in one-

dimensional arrays. 
3.	 State three factors you would considered when creating a one-dimensional array.
4.	 In C++, it is possible to read and display elements past the end of the array. How 

can such a bug be detected and corrected?  
5.	 Explain why storage of characters array is different from storage of numeric 

elements in an array.
6.	 Differentiate between a null character and null value as used in arrays.
7.	 Using a sample program, demonstrate how you would use the get() function to 

read a string in as an array of characters. The output from the program should be 
displayed on the screen.

8.	 Differentiate between strcpy () and strncpy() library functions used to manipulate 
strings. 

char greet[]={‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};
char greet[]=“Hello”;
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9.	 Write a c++ program that prompts the usr to enter his or her last name. the program 
should then display the name and the number of characters that makes up that 
name.

10.	The figure below shows faces of six-sided die with each side marked with dots 
representing each face 1. To generate random numbers, a player rolls a single die 
600 times and the frequency of each face is recorded in an array. Write a C++ 
program that would be used to output frequency of each face in a one-dimensional 
array.

   

11.	Give the output produced by the following program:
#include <iostream>
#include <cstring>    
using namespace std;
 
int main() {
   char msg []= “Hello World!”;
   char msg1[] =”Computer Science”; 
   string msg2;
   cout << msg << endl;
   cout << strlen(msg) << endl;  
   cout << msg1[3] << endl;  
   msg2= strcat(msg,msg1);     
   cout << msg2 << endl; 
   cout << strcat(msg1, “ Study”) << endl;            
} //end main

  



Key Competency
By the end of this unit, you should be able to use operating systems.

Unit Outline
•	 Definition of operating system.
•	 Functions of operating systems.
•	 Desirable characteristics of operating  systems.
•	 Components of operating system.
•	 Common operating systems
•	 Smart phone operating systems
•	 History of operating systems
•	 Types of operating systems
•	 Basic MS-DOS commands and its main features

Introduction
This unit gives a broader view of the operating system by defining what it is, giving 
its functions in the computer and its characteristics. The components of the operating 
system and some of the common operating systems are explained. Finally, the unit 
gives you the history of computer operating systems.

15.1  Definition of operating system

 Activity 15.1:Research work
Consider the following scenarios and answer the questions that follow: 
1.	 On a busy construction site, many activities need to be accomplished. For 

example, we need workers and machines who will dig trenches, those who dress 
the stones, others who bend and position steel rods, concrete mixers etc. 
(a)	 What will happen if all these activities are not properly planned and 

controlled?
(b)	 Who normally makes sure that the work is going on according to plan?

2.	 Imagine a football match or any other ball game. What would happen if:
(a)	 There is no referee?
(b)	 The referee is biased?

3.	 What role does the referee play in such games?

INTRODUCTION TO 
OPERATING SYSTEMSUnit 15

277

Introduction to Operating Systems



An operating system consists of a set of complex programs that work together to 
control the operation of a computer by managing computer hardware and software 
resources. It controls execution of user programs called applications and provides 
an interface between the applications and the computer hardware.
Without the operating system, user applications would find it difficult to run on 
the computer because they would need to have lower level programming to access 
the hardware resources of the computer. However, the operating system masks this 
complexity and enables user applications to easily access computing resources. Figure 
15.1 below shows the role that the operating system plays in a computer.
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Figure 15.1: The positioning of the operating system in the computer 
In essence, computers have two modes of operation: the user mode in which the 
executing code has no ability to directly acces hardware or reference memory and 
the kernel mode in which the executing code has complete and unrestricted access to 
the underlying hardware. The operating system is the most important software that 
runs on the computer. It runs in what we call the kernel mode as a supervisor of all 
other programs (user applications) on the computer. 

Activity 15.2: Operating system components
In light of the knowledge that you already have, study Figure 15.2 below and describe 
the various components that are represented in the computing machine. How do the 
components interact with each other?

Figure 15.2: The operating system components running on hardware
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The hardware of the computer consists of the hardware logic e.g. circuit chips that can 
be manipulated using special manufacturer low level software routines. The hardware 
is made up of the system unit, mouse, screen, keyboard etc. After the hardware, we 
have the kernel mode of the operating system. 
The operating system runs in kernel mode. The part of the operating system that runs 
in this mode is called the kernel, which has routines that respond to user requests. 
When a user places a request (issues a command) through the shell, eg. a read/write 
request, the relevant routine in the kernel passes the request to the firmware which 
in turn instructs the hardware to perform the task.
The part of the operating system that displays an interface to the user is called the 
operating system shell. Together with user applications, it runs in user mode, on top 
of the kernel. The user applications or the users interact with the shell which in turn 
talks to the kernel. Users run applications to accomplish various tasks.  

15.2  Functions of operating systems
The operating system is a resource manager. All the functions it performs are aimed 
at efficiently and effectively managing the resources of the computing machine. Let 
us look at some of the functions of an operating systems.

15.2.1  Job scheduling 
The operating system kernel schedules the use of resources. Scheduling determines 
which task will use what resource in the computer a particular time. Some tasks will 
be given priority over others due to the nature of request. Scheduling is achieved 
through a process called interrupt handling i.e. a program that requires to use a 
resource sends a special request called an interrupt to the operating system. After 
examining the interrupts received, the operating system decides which task would 
be given priority. Therefore an interrupt is a special request made by running tasks 
or processes to the operating system requesting for a particular needed resource.

15.2.2  Resource control and allocation 
The operating system maintains a set of queues made up of the processes waiting 
for a particular resource. Using the round robin technique or any other criteria, each 
process on the queue is given access to a resource in turns. A round robin technique 
is whereby each running task is allocated a particular resource for use in equal time 
intervals following a particular order. When the interval expires, the task releases 
the resource and waits behind the queue again for its chance to come round again.

15.2.3  Input/output management: 
The operating system uses special software called device drivers to manage and 
communicate with input/output devices such as keyboard, mouse, display, sound 
output devices, printers and scanners. It controls how the computer receives input 
from the user and how it gives output to the user. 
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15.2.4  Memory management 
The operating system divides the main memory into partitions. Each partition is 
allocated to a task or process that is running in memory. For example, if you are 
running a word processor application, it will be allocated memory by the operating 
system (O/S). The O/S then protects that allocated memory from other applications 
to avoid conflicts that can arise if two or more processes lay claim to the same.

15.2.5  Error handling 
The operating system performs error checking on hardware, software and data. It 
will always display error or exception messages in case they happen. It may suggest 
solutions to problems that are identified. 

15.2.6  Job sequencing/process management 
The operating system arranges tasks to be processed in a particular order and clocks 
them in and out of the processor. A task is also called a process in the operating system. 
When a user for example, starts a word processor, it becomes a running process.

15.2.7  Security
Modern operating systems implement security policies such that unauthorised users 
cannot get access to a computer or network resource easily. The most basic security 
mechanism is the user name and password required during system log on.

15.2.8  File management
The operating system organises how files and folders are stored and accessed on the 
storage media. It creates a file system i.e. a root directory which contains all files 
and folders. Each folder or file created can be accessed through a direct path from 
the root directory to its location in the file system. The file system format is also 
created by the operating system e.g. Windows has the File Allocation Tables (FAT), 
New Technology File System (NTFS) etc. UNIX has the Unix File System (UFS).

15.3  Desirable characteristics of operating systems

Activity 15.3: Research work
Read the magazines/articles provided by the teacher covering the characteristics of an 
operating system. Access the website suggested by the teacher and do some research. 
Note down the characteristics that seem to be key i.e. those that many authors seem 
to agree on. Use a search engine to search for more information on the same.
Compile a two page report in readiness for a class discussion that will be facilitated 
by the teacher.

The operating system of any computer has to have certain key characteristics in order 
for it to function properly and satisfy the requirements of the users and application 
programs. These characteristics include but are not limited to the following: 
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15.3.1  Efficiency
An efficient operating system achieves high throughput and low average turnaround 
time. An efficient operating system ensures equitable management of resources, 
conflict resolution (to avoid deadlocks), quick response time etc.
Throughput means the ability to schedule and manage user requests as fast as possible 
in terms of resource allocation and task accomplishment. The operating system being 
the supervisor and manager of all the computing resources has to make sure that 
the scarce resources of the computer like processor time, memory and input/output 
devices are used efficiently. 

15.3.2  Robustness
A robust operating system is fault tolerant and reliable —the system will not fail due 
to isolated application or hardware errors, and if it fails, it does so safely. During 
exceptions, the operating system must minimise loss of data and prevent damage to 
system hardware. Such an operating system will provide services to each application 
unless the hardware it relies on fails.

15.3.3  Scalability
A scalable operating system is able to support addition of more resources. If an 
operating system is not scalable, then it will quickly reach a point where additional 
resources will not be fully utilized. A scalable operating system can readily adjust its 
degree of handling resources e.g. if more memory, input/output devices or processor 
speed is added, it should scale to accommodate the new capabilities. In multi-processor 
systems, addition of more processors and hard disks should not cause the operating 
system to crash. 

15.3.4  Extensibility
An extensible operating system will adapt well to new technologies and provide 
capabilities to extend the operating system to perform tasks beyond its original 
design. This means that the architecture of the operating system need to be open to 
future improvement or enhancement.

15.3.5  Portability
A portable operating system is designed such that it can operate on many hardware 
platforms and configurations. Application portability is also important, because it 
is costly to develop applications, so the same application should run on a variety of 
hardware configurations to reduce development costs. The operating system is crucial 
to achieving this kind of portability.

15.3.6  Security
A secure operating system prevents users and software from accessing services and 
resources without authorization. Protection refers to the mechanisms that implement 
the system’s security policy.
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15.3.7  Usability and Interactivity
An interactive operating system allows applications to respond quickly to user actions, 
or events. Users find it intuitive to use through good user friendly interfaces.

15.4  Components of operating systems

Activity 15.4: Research work on operating system
Using a search engine, find out the meaning of organization chart. How is it structured? 
Using the knowledge you have acquired, analyse the organizational chart of your 
school. In case there is none, you will have to create one. Answer the following 
questions:
1.	 What structure does the chart take e.g. hierarchical, flat etc.
2.	 Why is it important for some elements to be at a higher level than others?
3.	 What do you think is meant by “line of control” or “line of command?”
4.	 In terms of authority, which level has the most power?
5.	 In terms of day to day running of the organization which level does the most 

work?
An operating system is made up of several components. Each component has a specific 
function or role that it should plays. The main components of an operating system are:

15.4.1  Kernel 
This is the central part of the operating system which consists of the core routines 
that manage input/output requests from user applications, the central processing 
unit and memory. It receives the instructions and converts them into data processing 
instructions for the central processing unit to execute. Figure 15.3 below depicts how 
a kernel interacts with various components of the computer.
 

Figure 15.3: Operating system kernel
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15.4.2  Shell
An operating system shell is a user interface that enables the user to interact with and 
access the services offered by the operating system. The user gives commands to the 
operating system through its shell. There are various types of shells:
(a)	 Command line shells: the user types commands at the prompt.
(b)	 Menu driven shells: the user selects commands from menus.
(c)	 Graphical user interface shells: the user selects  graphical menus and icons.
Examples of command line operating systems are UNIX and Disk Operating System 
(DOS). Examples of menu driven operating systems are the DOS shell. Finally, 
examples of graphical user interface (GUI) operating system are Linux and Microsoft 
Windows.  

15.4.3  File system
The file system refers to the way that data is organised and accessed by the operating 
system. The operating system hides all the complexities of various devices to the user 
and presents a simple interface for accessing and utilising resources (a file system).
The most common way of organising data is setting up a directory structure on 
any accessible resource be it a hard disk, network drive or removable media in a 
hierarchical manner (Figure 15.4). The hierarchy starts with a root object then moving 
down to the branches. The data is usually organised into three levels:
(a)	 Drive: a drive is a logical storage location for files and folders. It is usually 

associated to a physical storage device or location e.g. drive C: for the hard disk 
drive. The root directory is created in a drive and is denoted by a backslash (\). 

(b)	 Folders: a folder is a storage location of related files. Folders are created in the 
main directory forming a hierarchical tree structure.

(c)	 Files: a file is a storage location of related records.
A computer tree is usually an up-side-down one with the root being at the top and 
the folders and files branching off below the root (Figure 15.4).
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Figure 15.4: Operating system file system structure
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The tree structure makes sure that there is a clear path from the root to any of the 
folders or files in the file system. 
Each operating system has its own signature file system data format. For example, 
Windows has file systems like File Allocation Tables (FAT32), Extended FAT (FAT64) 
and New Technology File System (NTFS). Unix on the other hand has what we call 
the Unix File System (UFS) also called the Berkeley Fast File System (FFS). Each 
file system has its own way of coding and decoding its data when writing or reading 
to a storage device.  

15.4.4  System resources
The operating system supervises the use of scarce system resources. Scarce because 
every application on the computer competes to use these resources. The O/S being the 
supervisor brings sanity in an environment that can easily degenerate into conflicts 
and deadlocks as various applications compete for the scarce resources. A deadlock 
is a situation where two or more processes needing the same resources each happen 
to hold onto one of the resources as they wait for each other to release the other 
resource. Such processes would freeze in waiting mode and non would proceed with 
the processing. These resources are:
1.	 The processor: processor time is one of the most sought after resources in the 

computer. Each executing task needs the attention of the processor in order for 
its requests to be executed. Scheduling makes sure that CPU time is equitably 
and efficiently distributed to various tasks.

2.	 Memory: this is also a scarce resource. each executing task requires memory. 
There is never enough memory especially in todays computing machines that 
run heavy multimedia applications. The memory must be properly managed to 
enforce mutual exclusion hence avoiding two or more tasks interfering with each 
other. each task should be allocated a protected memory address that cannot be 
used by any other task at the time of running.

3.	 Input/Output devices (I/O): these are critical to the smooth running of the 
computer. All running tasks require input of data or output of processed data. The 
I/O devices are therefore very important system resources. Efficient management  
of I/O improves the performance of the computer e.g. do not allocate I/O devices 
to idle tasks, give them to running tasks instead.

15.5  Common operating systems

15.5.1  MS-DOS
MS-DOS stands for Microsoft Disk operating System. It was first developed by 
Microsoft Corporation, USA. Although virtually obsolete today, MS-DOS is a command 
line operating system that was developed to manage disks on a personal computer. The 
user issues commands at the shell prompt and the operating system reads and executes 
them. MS-DOS formed the foundation of today’s Microsoft Windows.
You can use some MS-DOS commands by opening the command prompt in windows 
i.e. On the Start menu, All Programs menu, point to Accessories then click Command 
Prompt 
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The command prompt window will pops up (Figure 15.5) in which you can type 
DOS commands like:

 
Figure 15.5: The Command Prompt window

Activity 15.5: Dos commands
Use the following commands. After typing each command at the prompt (C:/>) press 
the enter key. What do you observe?
1.	 Dir	 : the Dir command displays the contents of the current folder
2.	 cls	 : the cls command clears the screen
3.	 cd..	 : move one directory lower in the directory tree
4.	 md Life	 : make a directory called Life 
5.	 cd Life	 : move one directory higher to the directory called Life
6.	 cd\	 : move to the root directory 

15.5.2  UNIX 
It was first developed at the Bell Labs research center in the USA in the 1970s by 
Ken Thompson. UNIX is a multitasking operating system which can support many 
users simultaneously. It is ideal in environments where service providers maintain 
centralised resources e.g. servers, internet connections, file servers etc. for access by 
many users. UNIX can run on servers, desktops and even laptops. 
Because of its open source nature, many different groups have made contributions to 
improve it resulting in many versions of UNIX e.g. Sun Solaris UNIX and MacOS X. 
Because of its high security architecture, it has been the operating system of choice 
for many internet servers and servers for big organisations.
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15.5.3  LINUX

Activity 15.6: Linux shell commands
Start the computer running Linux. Read the manual / handout provided to you by 
the teacher to help you navigate the Linux environment. What version of Linux are 
you using? Open the shell and then do the following:
Follow the teachers instructions to use the following Linux commands in the 
Linux shell. Linux and unix share commands.
1.	 ls	 : What happens? This command should list the files in the current directory.
2.	 ls –l: What happens? You should see your files listed in the long format.
3.	 emacs Life: What happens? This command should create a file named Life and 

enable you to edit it in a text editor.
4.	 cp Life Life1: copies the file Life and saves the copy as Life 1
5.	 rm Life: remove the file named Life from this directory
6.	 wc Life1: tell you how many words and characters are in the file Life1
Access the website suggested to you by the teacher to find out more about UNIX 
commands and use them to perform tasks.

Linux is a UNIX compatible operating system. It was developed by Linus Tovalds at 
the University of Helsinki, Finland. It has a graphical user interface (GUI) hence has 
become very popular among both individual and corporate users. You can use UNIX 
commands on Linux if you open the command shell. Linux has spread its wings for 
use not only on servers, and personal computers but also on portable devices like 
mobile phones, tablets etc. Figure 15.6 below shows a Linux desktop.

 

Figure 15.6: The Linux desktop

286

Introduction to Operating Systems



There are many versions of Linux including  Ubuntu, SUSE and Red Hat Linux. 
Linux is structured into two major sections: the user mode and the kernel mode. 
each of these modes has various modules which perform specific tasks e.g. the user 
mode has the windowing system, graphics module etc. while the kernel has memory 
management, processing schedule etc. 

15.5.4  MAC OS
Mac OS or Macintosh Operating system is a series of graphical user interface–based 
operating systems developed by Apple Inc. for their Macintosh line of computer 
systems. It is Mac OS which popularized the concept of graphical user interface on 
computers. Indeed, Mac OS to date even with all its variants on mobile devices leads 
in graphical user interface technology. That is why most publishing and multimedia 
firms prefer working in the Mac OS environment. The last Mac OS was Version 9. 
In 2012, Macintosh developed Mac Operating System X (Mac OS X) where X is the 
latest version build number. OS X is different from earlier versions of Mac OS because 
it is based on UNIX platform. One of the latest OS X is OS 10 (simply referred to as 
System 10 among users). Figure 15.7 below shows an Mac OS 10 desktop. 
 

Figure 15.7: Apple Macintosh operating system desktop

15.5.5  Microsoft windows
The Microsoft Windows family of operating systems originated as a graphical layer 
shell on top of the older MS-DOS environment for the IBM PC. Modern versions are 
divided into three main families: Windows NT, Windows Embedded and Windows 
Phone. Each family targets a certain market segment. The market segments targeted 
are:
1.	 Windows NT: servers, personal computers and laptops.
2.	 Windows Embedded: for devices that have limited computing resources e.g. 

mobile phones, motor vehicle controllers etc.
3.	 Windows Phone: for smartphones. 
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The latest Microsoft Windows platforms are Windows 7, 8 and Windows 10. Windows 
10 seeks to provide a unified operating system architecture for all devices be they 
mobile phones, computers, tablets etc. for easy interoperability. Figure 15.8 shows 
a picture of  Microsoft Windows 10 desktop.
 

Figure 15.8: Windows 10 desktop

15.6  Smartphone operating systems

Activity 15.7: Working with smart phone
Take the mobile phone provided to you by the teacher. Investigate its specifications 
as directed by the teacher e.g.
1.	 Find out the operating system it uses and the version.
2.	 Investigate the applications that it has.
3.	 How different is this phone from the normal phones?
4.	 What are the specifications for: 

(a)	 RAM and internal memory size
(b)	 Processor type and speed
(c)	 Camera resolution in pixels
(d)	 Screen resolution and size
(e)	 Internet access rate i.e. Edge, 1G, 2G, 3G, LTE etc.
(f)	 Applications it can support e.g. mobile office, games, social media etc. 

Draw a specifications table capturing all these information and present it in a class 
discussion hosted by the teacher.

A smartphone or smart phone is an advanced mobile phone which has characteristics 
of a powerful computer. A typical smartphone has a powerful processor, large memory, 
powerful camera, touch large screen, fast internet access, many applications, an 
operating system etc. They typically combine the features of a mobile phone with 
a computer. Most smart phones were initially designed for high end or power users 
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whose needs go beyond simple calling, texting and low quality pictures. Such users 
require powerful phones in order to capture high resolution images, take minutes in 
meetings, link to work emails etc:
Therefore, due to the complexity of tasks that smartphones need to handle, they 
require an operating system. The key leading operating systems for smartphones in 
the world today are Android, Apple’s iOS and Windows Phone. We are going to look 
at these and a few others.

15.6.1  Android operating system

Activity 15.8: Working with android phone
Take the Android phone provided to you by the teacher. Learn how to do the follow-
ing as instructed by the teacher:
1.	 Unlock the screen
2.	 To check the android version running on the phone
3.	 To download applications from the app store.
4.	 To view the phones specifications.
5.	 To  access the messages, contacts and call activity log.
6.	 To play movies and view pictures.
7.	 To capture pictures and movies.
8.	 To send and receive messages, pictures and movies on social networks.
9.	 To access Mobile Office if it is present.

Android is developed by Google in collaboration with Open Handset Alliance (OHA) 
to run on Linux kernel and provide an open platform for all types of mobile phone 
architectures. Since its inception in 2005, android has taken the mobile device platform 
by storm. Many phone and tablet manufacturers around the world today produce 
Android compatible devices.
Due to its open nature, Android has attracted many mobile app developers who access 
the mobile hardware and develop intuitive applications, interfaces etc. Because of 
this, Android users have access to millions of free applications and resources. 
Although we are not discussing the architecture, it is worthwhile to note the three tier 
arrangement of application framework, libraries and the kernel. Apart from running 
on Linux, it has a GUI, web browser, and millions of applications developed by an 
ever growing forum of developers worldwide. Figure 15.9 shows an Android phone.
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 Figure 15.9: An Android phone
  

15.6.2  Apple operating systems

Activity 15.9 : Working with apple phone
Take the Apple phone provided to you by the teacher. If the phone is not physically 
present, search for iPhone on the internet to view the pictures and specifications. 
Learn how to do the following instructed by the teacher:
1.	 Unlock the screen
2.	 To check the iOS version running on the phone
3.	 To download applications from the Apple app store.
4.	 To view the phones specifications.
5.	 To  access the messages, contacts and call activity log.
6.	 To play movies and view pictures.
7.	 To capture pictures and movies.
8.	 To send and receive messages, pictures and movies on social networks.
9.	 To access Mobile Office if it is present.

Apple’s iOS is proprietary and runs on Apple iPhones, iPads, and iPods only. A 
special version of iOS powers the Apple smart watch too. It is a multi-touch and 
multi-tasking operating system for mobile devices. It enables the user to tap and 
touch the screen as a means of communicating with the device. Figure 15.10 below 
shows the picture of an iPhone.
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Figure 15.10: An iPhone running iOS

15.6.3  Windows phone operating system

Activity 15.10 : Working with Windows phone
Take the windows phone provided to you by the teacher. If the phone is not 
physically present, search for windows phone on the internet to view the pictures 
and specifications. Learn how to do the following instructed by the teacher:
1.	 Unlock the screen
2.	 To check the Windows version running on the phone
3.	 To download applications from the Microsoft app store.
4.	 To view the phones specifications.
5.	 To  access the messages, contacts and call activity log.
6.	 To play movies and view pictures.
7.	 To capture pictures and movies.
8.	 To send and receive messages, pictures and movies on social networks.
9.	 To access Mobile Office if it is present.

The Windows Phone operating system was designed to run on smart phones. It came 
after windows mobile. The latest is Windows 10 which was released early 2015.
With this operating system, the phone can interoperate with all other Windows 10 
devices like tablets, laptops and computers on the universal Windows 10 platform. 
Figure 15.11 shows a Windows phone. It can support windows based applications 
like Mobile Office.
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Figure 15.11: A Windows phone
    

15.6.4  Difference between computer operating systems, firmware, mobile 
phone operating system.
There are a lot of details involved in computer OS design, but one prominent fact 
is that computer operating systems were not really designed for mobile devices that 
have limited hardware and processing facilities. Instead, they evolved, and were 
understood, as part of a wired system, most commonly, as parts of a single physical 
machine. As such, developers and engineers focused a lot on of technical specifics 
related to items like boot protocols, program threads, multiple process handling, CPU 
operation, and other elements of the traditional OS.
The mobile operating system is a newer concept. In many ways, the mobile OS has 
built on what the computer OS has accomplished but with resource constraints in 
mind. In fact, many modern developers working with mobile operating systems tend 
to borrow much from computer OS but find themselves in the following dilemma:
1.	 The screen of the mobile phone is smaller by far to that of the computer.
2.	 The processor of the mobile phone is far much less powerful than that of the 

computer though this gap is being bridged rapidly.
3.	 The I/O devices on mobile phones are greatly limited unlike those on the 

computer.
It is evident from the point above that the design and development of mobile phone 
operating systems will be different and geared towards the following:
1.	 Support for touch screens or limited keypads instead of keyboards.
2.	 Support for small size screens instead of large ones.
3.	 Support for lower memories.
4.	 Support for lower processing speeds.
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15.7  History of computer operating systems

Activity 15.11: Research on historical development of operating systems
Using the internet do research on the historical development of operating systems.

The historical development of computer operating systems can be divided into 
generations. As computing technology evolved so did the operating systems. 

15.7.1 The 1940’s to 1955: First Generations
The earliest electronic digital computers had no operating systems. A human operator 
would enter instructions mechanically, one bit at time using rows of mechanical 
switches. It means the computer program was purely in machine language. The 
computers themselves we made of vacuum tubes and or relays. Programming 
languages were unknown therefore there was no operating system or let us say a 
mechanical human operated system was in force. 

15.7.2 The 1955 – 65: Second Generation
Transistors were introduced in early 1950’s to become a game changer. This saw 
the age of the first mainframe computers. A computer program could be written on 
paper (using FORTRAN or an assembler language) then it could be punched into 
cards. The cards could then run batch processes on the mainframes. General Motors 
Research Laboratories implemented the first operating systems in early 1950’s for 
their IBM 701 computer. The system ran one job at a time i.e. batch processing was 
common since tasks were piled and submitted in groups or batches. Figure 15.14 
below shows how punched cards looked like:

 
Figure 15.14: A punched card compared to a modern microchip 
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15.7.3  The 1965 – 80: Third Generation
Computing technology evolved into two different branches in the 60’s:
1.	 Powerful word-oriented scientific supercomputers designed for science 		
	 and mathematics.
2.	 Character computers for use in commercial environments e.g. banking sector. 
IBM combined the two concepts as integrated circuits started to take root. Operating 
systems became a bit more complex with spooling (which stands for Simultaneous 
Peripheral Operation On Line) i.e. jobs were copied onto the hard disk and the 
computer could now read the next job from there instead of from a tape drive or 
punched card. 
MIT developed the first Compatible Time Sharing System (CTSS) in the 60s. The 
success of CTSS encouraged  Bell labs and General electric to develop MULTICS 
(MULTiplexed Information and Computing Service) which could support many tasks 
simultaneously.  

15.7.4  Fourth Generation
With the development of large scale integrated (LSI) circuit chips, computer memory 
and processor chips that could be programmed became a possibility. Microprocessor 
technology evolved to the point that it became possible to build desktop computers 
as powerful as the mainframes of the 1970s. 
The fourth generation operating systems of today are so advanced that they can 
support automation, multiprogramming, artificial intelligence etc. Modern operating 
systems run on all forms of platforms and can support many types of applications 
and processes.

15.8  Types of operating systems

Activity 15.12: Types of operating systems

Brainstorm the type of operating systems and their characteristics

Operating systems can be categorized as follows:

15.8.1  Batch
Batch processing mode involves collecting data over a period of time. Processing of 
that data is carried out from the beginning to the end without user intervention. Once 
the processing begins, the user cannot interact with the running process. However, in 
case a process stalls, it is possible to switch to the next available batch job.

Advantages
(a)	 Simple to run and operate.
(b)	 The CPU is not overloaded.
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Disadvantages 
(a)	 There is lack of interaction between the user and job during the job processing 

cycle.
(b)	 Low efficiency i.e. the CPU mostly idle due to the low input/output speed.
(c)	 Prioritisation of tasks within a batch is impossible.
(d)	 A big task holds onto resource for long denying other tasks until it processes.

15.8.2  Network operating systems 
A network operating system runs on a centralised computer called a server. A server 
listens to user requests on the network in order to respond service them. It offers 
services such as shared file resources and printers. The server manages important 
functions like data, users and their network privileges, security, applications and 
printer usage etc. 

Advantages
(a)	 Centralized focal point of network administration services reduces effort and 

makes the server highly reliable.
(b)	 Network security is managed from the server hence policies are easily enforced.
(c)	 Easy upgrades to new hardware and software technologies.
(d)	 Remote administration of the server is possible.

Disadvantages
(a)	 Server provides a single point of failure. Redundancy required to avoid this 

weakness.
(b)	 The server’s initial and running costs are high.
(c)	 Regular maintenance and updates are required.

15.8.3  Multiuser or Time Sharing operating system
A multi-user operating system allows many different tasks to appear as if they are 
running at the same time. Each task is allocated a slice of the CPU time in a round 
robin manner. This type of processing is good because the CPU capacity is utilised 
efficiently and the user experiences better response time from the system.

Advantages
(a)	 Quick response time.
(b)	 Reduces CPU’s idle time.

Disadvantages 
(a)	 Complex implementation algorithms are need.
(b)	 The security and integrity of tasks running simultaneously in memory is difficult 

to implement i.e. tasks can interfere with each others resources.
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15.8.4  Distributed operating systems
A distributed operating system is a single operating system that manages resources 
on more than one computer system. Computers are linked together and communicate 
with one another using high speed media make them behave like a single computer 
Distributed systems provide the illusion that multiple computers are a single powerful 
computer, so that a process can access all of the system’s resources regardless of 
their location.

Advantages
(a)	 Sharing of resources across the distributed system.
(b)	 Elimination of the single point of failure problem i.e. if one computer fails, a 

user can access resources through another working one.
(c)	 Load balancing across the distributed system means faster processing.

Disadvantages
(a)	 Complex to set up and maintain.
(b)	 Keeping global synchronised time across the distributed system is not an easy 

time.

15.8.5  Real time systems
In real time systems, user requests are received, processed and a response sent to the 
user within a specified time interval. Processing in real time systems happens online 
without unnecessary delays.
The time taken by the system to respond to an input request is called the response 
time. The response time should be small i.e. between 10 to 100 ms in order for the user 
to keep track of the current session.

Advantages
(a)	 Immediate response to user requests.
(b)	 Direct interaction between the user and the system.
(c)	 Delivers critical services to the user.

Disadvantages
(a)	 Expensive to set up, monitor and maintain.
(b)	 Complex to set up and run.  

15.9  Basic MS DOS commands and its main features
Below is a listing of each of the MS-DOS commands currently listed on Computer 
Hope and a brief explanation about each command. This list contains every command 
ever made available, which means not all the commands are going to work with your 
version of MS-DOS.
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15.9.1  Starting DOS

Activity 15.13: How to learn and use MS-DOS
Using the internet do a research on the invention and evolution of DOS. How is it 
different from Windows?

Follow the instructions detailed below to learn and use MS-DOS:
You can start DOS program as mentioned earlier. The symbol C:\> with a blinking 
cursor after it is called the command prompt or DOS prompt. The flashing underscore 
next to the command prompt is called the cursor. 
The cursor shows where the command you type will appear. The DOS commands are 
usually typed after this prompt. In DOS a filename consist of a filename an extension, 
the filename should not exceed eight characters and the extension must not exceed 
three characters.

15.9.2  How are files named?
While newer versions of DOS support longer filenames, the standard DOS filename 
format remains: 1-8 letter name, period, 3 letter extension eg: 
  PROGRAM.EXE 
  DATA.DAT 
  LETTER.DOC 
The extension to a file’s name is there to allow files of a similar type to be grouped 
together. i.e. all word processor files might have the extension .DOC, while all 
picture files might have the extension. PIC While these extensions can be specified 
by the user, many programs have used them to differentiate between formats, and so 
they have gradually become standardized. For example you would expect a “.TXT” 
file to be a file containing unformatted text, or a “.BMP” file to be in a bit mapped 
graphics file format. 
To completely specify a file on your computer you must specify its drive and directory 
path, and its filename. However a file does not always have to be specified in this 
complete form: If it is in the current directory, then you can just enter its filename.
If your command prompt does not look like the example above, type the following 
at the command prompt, and then press ENTER: 

cd \ 

DIR -  Displays directory of files and directories stored on disk. In addition to files 
and directories, DIR also displays both the volume name and amount of free storage 
space on the disk (if there are files stored in the current directory). Note that both of 
these are for the entire DISK, not just for the path you specified.
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The DIR command is also useful if you want to know what directories have been 
created on the specified disk. The directories will be displayed along with the files 
on the disk. They can be identified by the DIR label that follows the directory name.
Wildcard characters (? and *) can be used to specify groups of files.
To list files in C:
	 C :\> DIR
DIR has two options; /W or /P. /W (wide) causes the directory to be displayed 
horizontally across the screen. /P pauses the directory listing once the screen is filled.
To view the contents of a directory in wide format
	 Dir /w 
To view the contents of a directory one screen at a time
	 Dir /p 
To display only files with the. TXT filename extension on the current drive that begin 
with the letters FIL, enter 
	 dir fil*.TXT
To display only files on drive C that have no filename extension, enter
	 dir c:*.  
This form of the DIR command will also display directories. They can be identified 
by the DIR label that follows the directory name.

15.9.3 Creating a directory
To create and named FRUIT
	 MD fruit  
To change to the new FRUIT directory, type the following at the command prompt: 
	 CD fruit  
The command prompt should now look like the following: 
	 C:\FRUIT>
To create and work with a directory named ORANGES

Type the following at the command prompt: 
	 MD ORANGES
To confirm that you successfully created the ORANGES directory, type the following 
at the command prompt: 
	 DIR
The ORANGES directory is a subdirectory of the FRUIT directory. A subdirectory is 
a directory within another directory. Subdirectories are useful if you want to further 
subdivide information. 
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1.	 To change to the ORANGES directory, type the following at the command 
prompt:

	 cd ORANGES
	 The command prompt should now look like the following: 
	 C:\FRUIT\ ORANGES >
2.	 To switch back to the FRUIT directory, type the following: 
	 cd ..
	 The command prompt should now look like the following: 
	 C:\FRUIT>
To Copy the file “letter.txt” to a file called “letter.bak”. (Creates “letter.bak” if it 
does not exist, and overwrites it if it does).
	 COPY letter.txt letter.bak [
To Copy any file with an extension PIC, in the PICTURES directory on the flash disk 
of drive E: to the root directory of the hard disk.
	 COPY E:\pictures\*.pic C:\ 

15.9.4  Creating files
Use the copy con command e.g. to create a file called colors with red, green, blue 
and orange as the data items;
	 Copy con color.txt
	 Red
	 Green
	 Blue
	 Orange
Then press ctrl+z to terminate
DOS gives you a message that 1 File(s) has been copied

15.9.4.1 Copying files
To copy one file to another use the COPY command type the following
Copy color.txtcolor2.txtand press enter

15.9.4.2 Type a File with DOS
If you need to check the contents of a particular file or any DOS file, you will need 
to use the TYPE command.
Type color2.txt and press return.
DOS prints the contents of the file.

15.9.4.3 Rename a File
To rename color2.txt to sales.txt
rencolor2.txt sales.txt and press return.
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15.9.4.4 Rename a Group of Files
With the wildcard character *, you can also use the RENAME command to change 
a group of files.
 To rename all files with a .txt to have a .bob type 
Ren *.txt *.bob and press return.

15.9.4.5 Format a Flash Disk
Usually a flash disk comes blank. Before using it you may need to format it. Formatting 
can be used to check for bad area on the disk and remove all the data on the disk. 
Formatting destroys all information on a drive and thus you should never format C:  
unless under instructions.
At the C:\> prompt type: format e: if e is the flash disk drive letter.

15.9.4.6 Diskcopy Command
The Diskcopy command was designed to help a person to make an exact copy of a 
floppy disk. However, floppy disks have become obsolete. The command cannot be 
used on hard disk drives. It was designed for removable disks only. 
To make an exact copy of a disk in drive E: on a disk in drive F:, the two disks need to 
be of the same size and have the same file system. The command is issued as followed:  
Diskcopy E: F: <press enter key>
At the end of the Diskcopy operation, an exit code of 0 may be displayed to show 
that the operation was successful.

15.9.4.7 CHKDSK
Checks a disk and provides a file and memory status report. Provides information on 
the space used, space available, bad sectors if any etc. to fix errors using CHKDSK 
type CHKDSK/F.

15.9.4.8 Scandisk
Start the Microsoft ScanDisk program which is a disk analysis and repair tool used to 
check a drive for errors and correct any problems that it finds. Is a preferred method 
for fixing drive problems.

15.9.4.9 Copying a File from the Hard Drive to a Flash Disk
C:/> Copy <insert filename here> E: and press return.
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Unit Test 15
1.	 What is the major difference between an application software and the operating 

system.
2.	 Draw a diagram representing the role of the operating system in the computer.
3.	 The_____ is the user level component of the operating system and it displays 

the _____ to the user where______ can be given.
4.	 The operating system runs in ______ mode.
5.	 Describe five functions of the operating system.
6.	 Explain five characteristics of a good operating system.
7.	 Write brief statements about the following:

(a)	 Command line shells.
(b)	 Menu driven shells.
(c)	 GUI shells.

8.	 Draw the structure of a file system and describe it.
9.	 Define the following: File, Folder, Drive, Directory.
10.	 Explain the importance of the following in operating system management:

(a)	 Processor	 (b)	 Memory	 (c)	 I/O devices
11.	 Write brief notes about the following:

(a)	 UNIX operating system.	 (b)	 Linux operating system.
(c)	 Windows operating system.	 (d)	 Mac OS X operating system.

12.	 Describe a smartphone.
13.	 Justify the reason why smartphones need an operating system.
14.	 Compare and contrast a computer operating system and that of a mobile phone.
15.	 Briefly describe the following:

(a)	 Android.	 (b)	 iOS.
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Html-based Web Development

Key Unit Competency
By the end of the unit, you should be able to build standard compliant web pages 
using HTML.

Unit Outline
•	 Fundamentals of World Wide Web
•	 HTML syntax and structure
•	 HTML Elements
•	 Introdcution to XHTML
•	 Designing HTML pages
•	 Introduction to HTML5
•	 Migration from HTML to HTML5

Introduction
Over the past three decades, large corporations, medium-sized and small-scale 
business organizations have been using website to communicate company information, 
manage their projects and transact on a paperless environment. Furthermore, people 
who didn’t know what the Internet was several years ago are now reconnecting with 
their friends and family members on social media such as Facebook. It is now a fact 
that web technologies are no longer a reserve of business entities but for each one 
of us in the society. In this unit, we will begin by reviewing basic concepts relating 
to world wide web. Later, we take you step-by-step on how to develop and publish 
websites using HTML4, XHTML and HTML5. 

Activity 16.1: Evolution of HTML
Discuss and write an essay on how the Internet and World Wide Web (WWW) 
evolved from just a Project to  the current trends seen today in Web 2.0.  Why  is 
Tim-Berners Lee credited with the Invention of the WWW and the language used to 
develop the web pages? 

16.1  Fundamentals of World Wide Web
World wide web is an internet-based system or platform that allows hypertext 
documents to be interconnected by hyperlinks. A hyperlink is a word or phrase a user 
can click to move from one website or webpage to another. Website simply referred 
to as Web resides on one or more computers, referred to as web servers. Hypertext 
enables you to read and navigate text and visual information in a nonlinear way based 
on what you want to read next. The idea behind hypertext is that instead of reading 
text in a linear structure like in a book, you can easily jump from one point to another 
based on interests. The Web is cross platform because a user can access it on various 
devices such as desktop computers, tablets and mobile phones. 

HTML-BASED WEB 
DEVELOPMENT Unit 16
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16.1.1  Hypertext Markup Language
Hypertext Markup Language (HTML) refers to a language used to structure hypertext 
(web) documents for presentation on the World Wide Web. Unlike programming 
languages like C++, HTML is not a programming language but can be thought of 
as a presentation language used to instruct the browser on how to present text and 
multimedia content on the Web.

16.1.2  Evolution of HTML
The HTML was invented by Tim-Berners Lee, the founder of world wide web. Lee’s 
original HTML version was based on a more complicated document processing 
language known as Standard Generalized Markup Language (SGML). Soon, Lee 
released different versions of HTML causing incompatibilities between different 
developers using different versions. This led to:
1.	 A consortium known as World Wide Web Consortium (W3C) was 			
	 established to standardize HTML. 
2.	 The first standard version of HTML that was developed and maintained 		
	 by W3C was HTML 2.0 released in 1995. It specifies a set of tags that must 	
	 be supported by all browsers.
3.	 In 1996, release of HTML 3.2 standard then later HTML 4.0 in 1997. 
4.	 Most web browsers today support a more strict variation of HTML known 	
	 as Extensible Hypertext Markup Language (XHTML) that supports mobile 	
	 web applications too.
5.	 Today, we have HTML5 which many browsers and developers are using to 	
	 develop web applications.

Activity 16.2: Evolution of HTML
In groups, research on the internet the history of SGML in terms of the inventor, 
purpose, and syntax of the language.

16.2  HTML Syntax and Structure
HTML tags are used to define a set of common web page features such as titles, 
paragraphs, and lists, tables, forms, images and multimedia. Below is a sample HTML 
code that creates a blank web page. Using the basic code below, you can add more 
and more features as you insert text and pictures. Notice that every tag has a start 
tag e.g. <tagname> and an end tag e.g. </tagname>. 
<html>
<head>
<title></title>
</head>
<body>
</body>
</html>
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To create this sample of HTML document, proceed as follows:
1.	 In Microsoft Windows, open Notepad by clicking All Programs, Accessories 

and then click Notepad.
2.	 Write or the HTML code above. To avoid syntax error, make use correct 

punctuations and tags.  
3.	 To save the file, on the file menu, select Save As command to display the Save 

As dialog box.
4.	 In the file name box, type the name of the file with htm or html extension such 

as MyWebsite.html, and then select All files from Save as type dropdown list.
Once you finish creating the web page, you may need to view it in a browser such as 
Explorer, Mozilla, Chrome or Safari. For example, to view mywebsite.html, proceed 
as follows: 
1.	 Start your favourite browser and look for a menu or command button labeled 

Open or Open File. Alternatively, in Windows, press Ctrl+O to display the Open 
dialog box.

2.	 Select the drive or folder in which the html page was saved. 
3.	 Double click the file to open it in your browser. The browser displays the web 

page as shown in Fig. 16.1. 

Fig. 16.1: Sample web page

16.2.1  Types of HTML elements
HTML has different elements that perform different functions. The three most common 
elements are:
1.	 Structural elements.
2.	 Presentational elements.
3.	 Hypertext.
Let us look at each of these and examples of elements under each.
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Structural elements
A structural element is one that is used to describe the structure of a web page content 
i.e. the way the content is displayed on the page relative to each other conveys a 
particular meaning to the user. For example, content under a heading h1 (first level 
heading) would be considered as more important than content under a lower heading 
level e.g. h2 (second level heading). Similarly, content within the same list block will 
be considered as similar e.g. a list of towns within Rwanda etc.
1. <title>...</title>	 : identifies the title section of a document.
2. <h1>...</h1>		  : structures heading levels i.e. h1, h2, h3 . . h6.
3. <table>...</table>	 : structures the document section using tables.
4. <ul>...</ul>		  : unordered (bulleted) list
5. <Div>...</Div>		 : divides a document into sections.

Presentation (style) elements
Presentational elements are used to specify the web page style or how the content will 
be displayed on the page e.g. font size, color, margins, borders, layout etc. Examples 
of presentation elements are:
1. <b>...</b>	 	 : bolds text.
2. <style=“ ”>	 	 : specifies styles e.g. background color, font family etc.
3. <i>...</i>		  : makes the font be displayed in italics
4. <sub>...</sub>		 : subscript

Hypertext
The content on a web page is usually created and presented in the browser using a  
special format called hypertext. Different hypertext pages are linked together using 
hyperlinks. A hyperlink is special text or an image that the user can click on in order 
to jump to another section on the same page or to a different web page. One such 
element is the anchor written as <a> that makes text or image clickable. Once the 
user clicks the hyperlink, the web page pointed to is loaded e.g.
<a href=“ ”> </a>	 : a hyperlink. 
            

16.2.2  DOCTYPE and HTML Versions
The <!DOCTYPE> declaration is the first line in an html document placed before 
the <html> tag to help a browser to interpret the version of HTML used. These 
interpretations are found in the *.dtd file. The <!DOCTYPE> statement must be 
exact in spelling and case in order to have the desired effect.



306

Html-based Web Development
HTML versions
HTML can be classified into various versions depending since the first version dubbed 
HTML 1.0 was released in 1991 by Tim Berners-Lee.   Each version has a DOCTYPE 
used by a web browser to identify the version of HTML your document is using. In 
this section, we highlight four official set of HTML standard released since 1994.

1.	 HTML 2.0 standard was released in 1994 by the HTML Working group lead by 
Tim Berners-Lee and Dan Connolly. The following DOCTYPE tells the browser 
to interpret the document using HTML 2.0 specification: 

	 <!DOCTYPE html PUBLIC “-//IETF//DTD HTML 2.0//EN”>	

2.	 HTML 3.2: This standard was released in 1997 amidst competition by Microsoft 
and Netscape Communications control of the Internet.   The HTML 3.2  DOCTYPE 
is written as:

	 <!DOCTYPE html PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>

3.	 HTML 4.0:  HTML 3.2 was enhanced by W3C into HTML 4.0 specification that 
was published late in 1997 and. The standard was finally approved as HTML 4.01 
with the following three DOCTYPE declarations: 

•	 The following HTML 4.01 DOCTYPE declaration is used for documents that use 
frameset element to divide a document page into partitions known as frames:  

	 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//	
	 EN” “http://www.w3.org/TR/html4/frameset.dtd”>.	

•	 The HTML 4.01 Strict declaration that emphasizes on structure rather than 
formatting of HTML document. This means that elements and attributes such 
as font used for presentation are not supported: The following is DOCTYPE 
declaration for HTML 4.01 strict:  

	 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN” 		
	 “http://www.w3.org/TR/REC-html40/strict.dtd”>

•	 Unlike HTML 4.01 Strict, HTML4.01 transitional supports both structural and 
presentational elements and attributes. The following is DOCTYPE declaration 
for HTML 4.01 transitional:  

	 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 			 
	 Transitional// EN” “http://www.w3.org/TR/REC-html40/		
	 loose.dtd”> 
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4.	 HTML 5 is the latest W3C standard that was published in 2014. The standard 
deprecates presentation tags and attributes used in HTML 4 as discussed later. 
Unlike HTML 4 DOCTYPE declaration that DTD, HTML5 uses the following 
simple DOCTYPE: 

	 <!DOCTYPE HTML> 

16.3  HTML Elements

16.3.1  Tags and Attributes
HTML tags are used to mark up the start and end of an element. The general format 
of a tag is tagname enclosed in a pair of less than and greater than symbols (< >) 
as follows:

<tagname> e.g. <title>

The opening tag e.g. <title> “turns on” the element while the closing tag such as </
title> turns it off. Through the unit, we provide adequate activities that will help 
you learn more about opening and closing tags. For example, to instruct a browser to 
present text as a paragraph, use the <p>  opening and </p> closing tags as follows:

<p>This is a new paragraph separated from others by a blank 
line</p>

An attribute is used to define the property or characteristics of an element inside the 
element’s opening tag. All attributes are made up of two parts: name and value. For 
example, a paragraph may be right aligned using align attribute as follows:

<p align=”left”>This is left aligned</p>

In this section, we use basic example to describe commom tages used in HTML4. 

Activity 16.3: HTML elements and attributes
To create an HTML document, use a text editor or commercial tools such as Adobe 
Dreamweaver. Download and install Free HTML editors for Windows, Linux or 
Macintosh Operating Systems. Once you install your favourite editor, write the 
following HTML code and save the file as mypage.html.

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>
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<div>

  <p>some content comes here...</p>

</div>

<div>

  <p>some other content comes here...</p>

</div>

</body>

</html>

In the following subsection, we highlight common HTML tages used to create a web 
page illustrated by this basic code.

16.3.1.1  <html> 
The <html> tag is the first page structure tag that indicates that the content of the page 
conforms to HTML specifications. Thus, <html> serves as a container for all the the 
the other tags that make up a web page. Always remember to close the element tag 
with </html> tag as shown in the following HTML code. 

Fig. 16.2 shows how the HTML page is displayed on the browser.

<!DOCTYPE html>

<html>

...your web page...

</html>

Fig. 16.2: HTML structure tag

16.3.1.2   <head> 
The <head> tag is a container for other tags that contain information about the web 
page itself. This type of information that is not intended for the user is referred to as 
metadata. Generally, only a few tags are used in the <head> section to define title, 
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and information about the web page (metadata) and. Never put any content intended 
to be displayed on the web page in the header tags. Here’s a typical example of how 
you should structure the <head> element: 

<!DOCTYPE html><html>
<head>

<title>Welcome to My First Website </title>

</head>

...your page...

</html>

16.3.1.3  <title> 
The <title>  element is placed within the <head> to describe the content of the web 
page on the browser’s title bar. The text defined in the title is stored in as a bookmark 
making it easier for a search engine such as Google to display your page in the results 
page.  

16.3.1.4 <body>
The <body> tag marks the actual content of your web page. This includes text, images, 
hyperlinks, video and any other type of content intended for the visitors of a website. 
The following is a skeleton web page showing how to use the opening<body>  and 
closing </body> tags:

<!DOCTYPE html>

<html>

  <head>

  <title> Welcome to My First Website </title>

  </head>

  <body>

 ...your content...

 </body>

</html>
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Fig. 16.3 shows how the sample page appears when displayed on a browser. Note that 
the title welcome to ... is displayed on the title bar of the browser. The only content 
in the body section is ... your content...

Fig. 16.3: Body tag

16.3.1.5  Heading tags
Heading tags are used in the body section to define section headings that stand out 
from the rest of text. HTML provided six levels of section headings - <h1>, <h2>, 
<h3>, <h4>, <h5>, and <h6>. Note that the size of the heading reduces progressively 
with h1 being the largest while h6 is the smallest. By default, when headings are 
displayed, the browser adds one line before and one line after that heading. The 
general syntax of heading element is:

<headlevel> tex</heading level>

For example to display Breaking News as heading using the following syntax:
<h1> Breaking News! </h1>

The following HTML document displays the six heading levels (h1 to h6) 

<!DOCTYPE html>

<html>

<head>

<title>Heading Example</title>

</head>

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

<h4>This is heading 4</h4>

<h5>This is heading 5</h5>

<h6>This is heading 6</h6>

</body>

</html>
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Fig. 16.4 Shows how the headings appear when displayed on a browser such as 
chrome or Mozilla Firefox.

Fig. 16.4: Heading levels

16.3.1.6 Paragraphs
The <p> tag offers a way to structure your text into paragraphs that are seperated 
from each other by a blank line. To add several paragraphs, each of the paragraph 
should be enclosed between the opening <p> and closing </p> tag.  For example:

<!DOCTYPE html>
<html>
<head>
<title>Sample Paragraphs</title>
</head>
<body>
<p>This is the first paragraph of text.</p>
<p> This is the second paragraph of text.</p>
<p> This is the third paragraph of text.</p>
</body>
</html>
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Fig. 16.5 Shows how the paragraphs are displayed on the browser. By default, 
paragraphs are separated by blank lines.

Fig. 16.5: Paragraph tag

16.3.1.7 Comments
Comments are used to explain parts of HTML statement especially in complex 
documents to increase readability. They help other web developers understand the code 
even in future in case of modification. If used, comments are ignored by a browser 
when the page is displayed. To indicate that a statement is a comment, enclose it 
within <!-- …--> tags. For example, the following statements are interpreted by the 
browser as comments hence they are not displayed on the screen. 

<!-- This is a comment -->

<!-- Rewrite this section with humor -->

<!-- Please answer all questions in this section -->

Having looked the syntax of HTML 4, Table 16.1 gives quick overview of some of 
the elements discussed in this section.
  
Tags Description
<html> </html> Marks the start and end of the entire HTML page.
<head> </head> Marks the start and end of head or prologue of a web page.
<title> </title> Marks the start and end of the page title displayed on the 

browser’s title bar.
<body> </body> Marks the start and end of the web page content to be 

displayed on the web page.
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<h1> </h1> Marks the start and end of first-level heading.
<p> … </p> Marks the start and end of a paragraph.
<!-- comment --> Indicates the text within the tag is a comment and should 

not be displayed on the browser.

Table 16.1: Basic HTML elements

Activity 16.4. HTML tags
1.	 Using heading and paragraph elements create a webpage that briefly describes 

at your school. This page should contain information such as school name, your 
school profile and geographical location at your school.. 

2.	 Explain what happens if you insert a blank line between the paragraphs but enclose 
the paragraphs within a single <p> ..</p> pair. 

16.4  Introduction to XHTML
As earlier mentioned another markup language is known as Extensible Markup 
Language (XML). The letter X in XHTML stands for extensible which means that 
an XHTML developer can define new elements.
Although XHTML and HTML 4.01 are almost same in terms of elements, the main 
difference between the two is that XHTML has strict rules for defining document 
structure. The following are some of the differences between the XHTML 1.1 and 
HTML 4.01 standard:
•	 Unlike HTML 4, XHTML is case sensitive, hence all tags must be in lower case 

e.g. <html>, <body>, <div>, <p>, <b> etc. No upper case or mixed case is allowed. 
•	 Each tag must have a closing tag e.g. <div>  </div> , <li>  </li>.
•	 Unlike in HTML standard in which you can define an attribute and leave it blank, 

in XHTML each attribute must have a value. 
Throughout the remaining part of this unit, we adhere to basic XHTML rules but 
base our examples on HTML 4.01 standard. To take care of both standards, we use 
HTML without the version number to stand for this hybrid approach.

16.4.1  XHTML syntax and structure
XHTML standard contains doctype and elements used to define various parts of a 
webpage. The following is a general structure of an XHTML document: 
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN”
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“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>

<head>

<title>Sample XHTML Document</title>

</head>

<body>

<p> The content to be viewed comes here...</p>
</body>
</html>

The above HTML page when viewed on a web browser appears as shown in Fig. 
16.6 shown below.

Fig. 16.6: XHTML structure

In the following subsection, we briefly discuss some of the features of XHTML 
starting with DOCTYPE declaration.

16.4.2  DOCTYPE and XHTML Versions
Based on <!DOCTYPE> declarations, there are four versions of XHTML i.e. versions 
1.0 Strict, 1.0 Transitional, 1.0 Frameset, and 1.1. declarations must be on the first 
line of the page.

1. XHTML 1.0 Strict:

Contains all HTML elements and attributes. However, it does not include 
presentational or deprecated elements (like font) and framesets are not allowed. Tags 
must  be written as well-formed XML. It is declared as: 
	 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” 

	 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
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2. XHTML 1.0 Transitional:

Contains all HTML elements and attributes, including presentational and deprecated 
elements (like font) but framesets are not allowed. Tags must  be written as well-
formed XML. It is declared as: 

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” 
	 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3. XHTML 1.0 Frameset:

It allows framesets element to partition web page into columns. It is declared as: 

	 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN” 

	 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

3. XHTML 1.1:

Equivalent to XHTML 1.0 Strict, but allows you to add modules e.g. different language  
support modules etc. It is declared as:

	 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN” 
	 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

16.4.3  XHTML elements and attributes
Observe the following rules when using XHTML:
1.	 Write a DOCTYPE declaration at the start of the XHTML document.
2.	 All elements and attributes should be written in lower case e.g <body>.
3.	 Each opening tag must have an equivalent closing tag.
4.	 Nest all the tags properly.
5.	 Attribute values must be enclosed in quote marks e.g. <td rowspan = “3”>.

6.	 Elements such as <b> and <i> have been replaced by <strong> and <em>  
respectively. 

16.4.4  XHTML entities
An entity can be defined as a special character or symbol which may not be readily 
available on the keyboard e.g. numeric, latin and special characters that can be 
embedded on a web page using character entity references. The references have 
both a numeric value as well as a named value. You can use either as summarised 
in the table below: 
Numeric value Named value	 Display Description
&amp; &#38; & ampersand
&copy; &#169; c Copyright
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&gt; &#62; > greater than
&lt; &#60; < less than
&quot; &#34; ” quotation mark
&nbsp; &#160; non-breaking space
Numeric value Named value	 Display Description
&emsp; &#8195; em space
&frac12; &#189; 1/2 fraction one half
&frac14; &#188; 1/4 fraction a quater
&frac14; $#732; ~ small tilde

Table 16.2: XHTML Entities

Activity 16.5: XHTML entities and page codes
Use the entities in Table 16.2 to do the following to the webpage you created in 
Activity 16.4:
1.	 Insert the copyright symbol on a web page
2.	 Display: y > x on a web page
3.	 Display: 1/2 + 1/4 = 3/4 on a web page.
4.	 Most web browsers have a way of letting users view the HTML source of a web 

page. Demonstrate how you would display the source code of a REB home in 
Firefox, Windows Explorer, Chrome, Safari and Opera. Identify some similarities 
between the source code of viewed pages and the one you created in activity 
16.3 in terms of organization and tags used.

Assessment Exercise 16.1
1. 	 Write the following acronyms in full:

(a)	 HTML
(b)	 XHTML

2.	 Differentiate between an HTML tag and HTML element.
3.	 Using examples, illustrate how the following HTML tags are used:  

(a)	 Title
(b)	 Body
(c)	 Paragraph
(d)	 Heading

4.	 Using an example, describe the general structure of an HTML page.   
5.	 Explain the importance of using HTML comments in a web page.  
6.	 Why should DOCTYPE appear at the start of every HTML page. 
7.	 Describe the steps you would follow to create a website.
8.	 List three software tools you can use to create a web page.
9.	 Write the entity that would display a copyright symbol on the screen.
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16.5  Designing HTML pages
In this section, we demonstrate how to design and present content in the body element 
using ordered lists, unordered list, image, hyperlink, and table elements. 

Activity 16.6: Designing HTML page
Discuss how you can add different types of web content such as text, tables, forms, 
and images, audio and video clips. Explain how you would preview each of the 
content separately in a web browser.

16.5.1  Ordered and Unordered Lists
HTML offers web developers with elements for displaying information in numbered  
or bulleted list. HTML supports three types of lists namely ordered list, unordered 
list, and definition list. The three are different in that: 
•	 Ordered <ol> list is a container for enumerated items ordered using numbers 

such as 1, 2,3. 
•	 Unordered list <ul> is a collection of related items that have no special order 

or sequence.
•	 Definition list <dl> is used for definitions such as glossaries that pair each label 

with some kind of description.
The three list elements consist of nested tags that define the type of list.

16.5.1.1  Creating ordered list
Ordered lists are lists in which each item is numbered or labelled with a counter such 
as alphabetic letters or roman numerals. It is advisable to create numbered lists only 
when the order or sequence of items on the list is relevant. To create an ordered list, 
use the <ol>...</ol> tags within which you include one or more  <li>...</li> (list item) 
tags as shown in the following HTML document. 
<!DOCTYPE html>
<html>
<head>
<title>Numbered List</title>
</head>
<body>
<ol >
<li>Boot-up the Computer</li>
<li>Insert System DVD</li>
<li>Run the Setup Wizard </li>
<li>Restart the Computer</li>
</ol>
</body>
</html>

Fig. 16.7 shows the list of four items after displaying the page on a browser.
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Fig. 16.7: An ordered list 
You can customize the numbering style of an ordered list using the type attributes 
as follows:
<ol type = “counter-type”>....</ol>; 
Example
<ol type = “a”> ...</ol>

Activity 16.7: Ordered list
Suppose that you wanted three items in a list of ingredients to be in roman i, ii, iii 
instead of  the default 1, 2, and 3. Modify the HTML document for Fig. 16.7 to display 
the items in roman numerals starting from  v instead of 5.

16.5.1.2  Creating unordered list
Unordered list is similar to ordered list only that the items are listed using bullets.  
To create unordered list, use <ul>...</ul> instead of <ol>..</ol> element as shown 
in the code below. 

<!DOCTYPE html>
<html>
<head>
<title> Fruits Menu</title>
</head>
<body>
<ul>
<li>Orange</li>
<li>Banana</li>
<li>Guava</li>
<li>Mango</li>
</ul>
</body>
</html>

Fig. 16.8 is an example of a bulleted list of four items as displayed on a browser.
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Fig. 16.8: Unordered list 
You can customize unordered lists using type attribute and values that denote bullet 
types such as disc, square, or circle. For example, to change the bullets displayed in 
Fig. 16.9 from round to square, use the following syntax:
<ul type = “bullet-type”>....</ul>; 

For example, to display unordered list shown in Fig. 16.7 as a square, bullets, use 
the style attribute as follows:
<ul type = “square”> ..</ul>

Activity 16.8: Ordered list
Suppose you wanted three items in a list of ingredients to be in numbered in Roman 
I, II, III instead of number 1, 2, and 3. Create a webpage with an ordered list of items 
displayed in uppercase Roman numbers I, II, III ...

16.5.2  Creating definition list
A definition list is used to present a glossary of terms, or other definition lists like  
dictionary and encyclopedia. To create a definition list, use <dl> ... </dl> element in 
which you place <dt> ... </dt> to mark up the term and <dd> ... </dd> to mark up 
the definition part. Therefore a definition list consists of the following parts:
•	 <dl> - Defines the start of the list
•	 <dt> - A term
•	 <dd> - Term definition
•	 </dl> - Defines the end of the list 

For example, the following HTML document shows a definition list for three terms: 
XTML, HTTP and CSS. 

<!DOCTYPE html>
<html>
<head>
<title>Glossary of Terms </title>
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</head>
<body>
<dl>
<dt><b>XHTML</b></dt>
<dd>XHTML stands for Extensible Hyper Text Markup Lan-
guage</dd>
<dt><b>HTTP</b></dt>
<dd> HTTP stands for Hyper Text Transfer Protocol</dd>
<dt><b>CSS</b></dt>
<dd>CSS stands for Cascading Style Sheet</dd>
</dl>
</body>
</html>
Fig. 16.9 shows how the definition list of the code above is displayed on a browser.

Fig. 16.9 Definition list

Activity 16.9: Definition list
Suppose that you want to display 10 Glossary terms using the definition list Modify 
the HTML document above to display the terms and their meaning.

16.5.3  Creating nested lists
To create a nested list, put the entire list structure inside another list as shown below:  

 <!DOCTYPE html>
<html>

<head>

 <title>sample Nested List </title>
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</head>

<body>

 <ol>

 <li>World wide web</li>

 <li>Organization</li>

 <li>Introduction to HTML</li>

<li>

<ul>

 <li>Definition of HTML</li>

<li> HTML Syntax</li>

 <li>Doc structure</li>

 <li>Headings</li>

 <li>Paragraphs</li>

 <li>HTML Comments</li>

 </ul>

</li>

<li>Hyperlinks</li>

<li>Advanced HTML</li>

</ol>

</body>

</html>

Fig. 16.10 shows an illustration of a nested list from the HTML code above.

Fig. 16.10: Nested list of items 
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16.5.4  Inserting Images and Background
One of the most compelling features of latest HTML standard is the ability to embed 
images that make your website more attractive.  The three types of images supported 
by HTML4 are GIF (Graphics Interchange Format), JPEG (Joint Photographic 
Experts Group) and PNG (Portable Network Graphics). 
To insert an image onto a web page, use the <img> tag; img is an abbreviation of 
the word image. The <img> is an empty tag does not require a corresponding closing 
tag. The general syntax for inserting a graphical object or image is:

<img src=”Image URL” ... attributes-list/>  

The src in the img tag is an important attribute that specifies the location (source) 
or URL of the image you want to insert onto the page. For example, The following 
HTML code displays an image called house: 

<!DOCTYPE html>
<html>
<head>
<title> This is my House </title>
</head>
<body>
<p>This is the house I call My Home</p>
<img src=”house.jpg” alt= My House />
</body>
</html>

Fig. 16.11 shows how the web page looks when displayed on the browser

Fig. 16.11: A picture inserted in a webpage 
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NB: use of the alt attribute is a good practice to specify alternate text for an image, 
if the browser cannot display or locate the image.

16.5.4.1  Setting Image size
You can specify the size using width and height attributes. The two attributes sets 
width and height of the image in terms of pixels or percentage of its actual size. For 
example, to set the size of the hows to occupy quarter of the screen, use: 
< img src = “house.gif” width =”25%” height = “25%” alt 
= “House” />

16.5.4.2 Image Alignment
The <img> tag uses the align attribute to align an image on top, bottom, left or right 
of the browser window. For example, to align house.gif on top of the page, use align 
attribute as follows:
<img src = “house.gif” align = “top” alt = “House”/> 

NB: Although some browsers currently support align attribute, it is no longer 
supported in HTML5.

16.5.4.3  Setting page Background Colour 
HTML4 comes with background formatting elements such as color and bgcolor. 
However, since we do not intend to go against current trends in XHTML and HTML5, 
we deliberately avoid using these elements and their attributes. 

Activity 16.10: Embedding images
Using the image tag, embed various images on one of the web pages created earlier. 
How do you insert images from a different location other than your current working 
folder?

16.5.5	 Inserting Hyperlinks
A hyperlink is a text, phrase or image that you click to go to another web page or a 
section within the current page. In most browsers, hyperlinks are often in blue and 
underlined. When you move a mouse pointer over a hyperlink, the arrow changes 
to a hand pointing at the link. Clicking the link takes you to a new page or place in 
the current page.

Activity 16.11: Hyperlinks
A hyperlink can be plain text, image or email. In groups, research on the web how 
each of these three types of links can be added on HTML page to direct visitors to a 
section of the same page or another web page.
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From activity 16.10 you may have observed that hyperlinks allow visitors to navigate 
between web sites by clicking on words, phrases, or images. 

16.5.5.1  Text Hyperlinks
To create a link in HTML, you need to know the name of the file (or URL of the file 
to which you want to link) and the text that will serve as the clickable hyperlink. 
To create a hyperlink use the anchor element: <a>...</a>. The <a> tag is called an 
anchor tag because it is used to create anchors for hyperlinks. 

16.5.5.2  Linking to a different Page
To create a link to other web pages, user the <a> tag and href hypertext reference 
attribute as shown in the following general syntax: 
<a href=”Document URL”...attributes-list>Clicable Link Text</a>

The href  attribute is used to specify the URL of the file the link points to. For example, 
to open a page with URL “http://www.tutorpoint.edu” use: 
<a href= “www.tutorpoint.edu”>Visit My Online Tutorial</a>

The following code shows how to add text-based hyperlink into a HTML page:
<!DOCTYPE html>
<html>
<head>
<title>Creating Hyperlinks</title>
</head>
<body>
<p>Click following link</p>
<a href=”http://www.reb.rw”> Rwanda Education Board official</a>
</body>
</html>

Fig. 16.12 shows how the link is displayed on the browser.

Fig. 16.12: Hyperlinks
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In most browsers, a hyperlink is an underlined text and blue in colour. In our case, 
once the visitor clicks on the link, he or she is taken to the web page of the tutorial  
site as long as it is a valid URL. 

16.5.5.3    Linking to Page Sections
To create a link to a particular section of the same page, we use the name attribute 
of the <a> tag. This is a two-step procedure as follows.
1.	 Create a link to the target web page within which you want to visit a specific 

section using the following general syntax:
<h2>Link to a Page Section <a name=”sectionname”></a></h2>

2.	 Create a hyperlink to the named section of the document where you want to visit.

For example, the following HTML code shows how to visit the top section of a 
web page:

<a href=”/html/html_text_links.htm#top”>Go to Top</a> 

16.5.5.4 Image hyperlinks 
To take care of people with special needs, you can also provide an image as a 
hyperlink. Similar to defining a text link, we use anchor (<a>) tag as follows:
<a href= “www.reb.rw >
<img src=”/images/logo.png” alt=”REB” border=”0”/> </a>

16.5.6  Using Relative and Absolute URLs
To link web pages that are contained in the same or different locations, we use relative 
or absolute URLs. A relative URL points to a file depending on its locations relative 
to the current file. On the other hand, absolute URL points to a file depending on 
actual locations. 

16.5.6.1  Specifying Relative URL
To specify relative URL we use the forward slashes (/) to refer to a directory within 
the current or two dots (..) refer to the directory above the current. Table 16.3 shows 
how to use relative URL to access flowers.html

Relative pathname Description

href=”flowers.html” flowers.html is located in the current 
directory.
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href=”files/ flowers.html” flowers.html is located in the directory 
called files, and the files directory is 
located in the current directory.

href=”../ flowers.html” flowers.html is located in the directory 
one level up from the current parent 
directory.

href=”../../files/ flowers.html” flowers.html is located two directory 
levels up, in the directory files.

Table 16.3: Relative URL

16.5.6.2  Specifying Absolute URL
Absolute URL points to a page by starting at the top level of directory hierarchy and 
working downwards to the target file. To specify an absolute path, you must start 
with a forward slash as shown in Table 16.4. 

Absolute pathname Description
href=”/u1/html/ flowers.html” In UNIX flowers.html is located in the 

directory /u1/html.
href=”/d:/files/html/ flowers.htm” In Windows flowers.htm is located on 

drive D: in the directory files/html
href=”/Macintosh%20HD/HTML/ 
flowers.html” 

In MacOS X flowers.html is located 
on the disk Hard Disk 1, in the folder 
HTML.

Table 16.4: Absolute URL

16.5.7  Creating Tables
Tables are used to organize data such as numbers, text, links and images into rows 
and columns. An intersection of a row and a column forms data cell in which table 
data is held as shown in Fig. 16.13. In HTML tables are created using the <table> 
tag which is a container for <tr> (table row) tag used to create rows and <td> (table 
data) tag used to create data cells. Before you create a table such as shown in Fig. 
16.13, consider the following table-features:

•	 Caption: indicates the type of data presented in the table 
•	 Table headings: the row that indicate the data displayed in each column
•	 Table cells intersection of rows and columns in which we insert data.
•	 Table data is the data or values in the table.
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Fig. 16.13: Sample HTML table

To create a table, we use the <table>…</table> element within which the following 
elements are nested: 

•	 <caption>..</caption> used to create the table caption
•	 <th> ...</th> tag is used to create the table heading
•	 <tr>...</tr> tag is used to create table rows 
•	 <td>...</td> tag is used to create data cells

The following HTML code produces the table shown earlier in Fig. 16.13. Notice that 
the table starts with a <table> tag followed by border, cell padding and cell spacing 
attributes and ends with the closing </table> tag.
<!DOCTYPE html>
<html>
<head>
<title>HTML Table Cellpadding</title>
</head>
<body>
<table border=”1” cellpadding=”5” cellspacing=”5”>
<tr>
<th>Employee Name</th>
<th>Department</th>
<th>Salary</th>
</tr>
<tr>
<td>Paul Raman</td>
<td>Marketing </td>
<td>15000</td>
</tr>
<tr>
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<td>Patricia Nguri</td>
<td>Production</td>
<td>7000</td>
</tr>
</table>
</body>

The following are basic atributes used to define or format an HTML table.

16.5.7.1 Border Attribute
The border attribute takes numeric values that specify thickness of the border that 
surrounds all the table cells. If 0 is used, the border is invisible while. In our example 
above, the statement below create a border of 1 pixel thickness.
	 <table border=”1”>

16.5.7.2  Height and Width attributes
To set the size of the table, use width and height attributes. The height and width 
attributes take width or height values in terms of pixels or percentage of the screen. 
For example, the statement below sets the table size to  width of 400 pixels and 
height of 150 pixels.
	 <table border=”1” width=”400” height=”150”>

16.5.7.3  Table Caption
The caption tag will serve as a title or explanation for the table and it shows up at the 
top of the table. However, it is important to note that the caption tag is deprecated 
in newer versions of HTML.

Activity 16.12: Tables
Use sample HTML pages to demonstrate the use of the following table features:
•	 The three elements used for separating a table into three sections header, body, 

and footer as shown.
•	 The table attributes such as colspan, rowspan, cellpadding, cellspacing used to 

format table cells.

16.5.8  Creating Forms
You may need to gather information such student’s details and store such information 
in the server. The most common method for gathering such information is by using 
a form. For example, Fig. 16.14 shows a sample HTML form used to collect user 
registration details such as first name, last name, nationality and phone. 
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Fig. 16.14: HTML form

When users fill forms and clicks the submit button, the  data keyed into the form is 
sent (posted) to the web server for processing or storage into a database. To create 
HTML forms, we use the <form> ... <form> element as follows:
<form action=”Script URL” method=”GET|POST”>
	 form elements like input, textarea etc.
</form>

For example, the following HTML code produces the form shown earlier in Fig. 
16.15 in the next section, we discuss other elements and attributes used to format 
HTML forms.

<!DOCTYPE html>

<html>

<head>

<title>Registration Form</title>

</head>

<body>

<h2> <font color=blue>Please Provide Your Registration Details </
font></h2>

<form action= “register.php” method= “get” >

 <p>First Name: <input type= “text” name= “FName” size=”15”> </p>

 <p>Last Name: <input type=”text” name= “lname” size=”15”></p>

 <p>Nationality: <input type=”text” name= “country” size=”25”></p>

 <p>Phone: <input type= “text” name= “phone” size=”15”></p>

 <p><input type=”submit” value=”Submit” name=”button”></p>

 </form>

 </body>

 </html>
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16.5.8.1  Form Action Attribute
The <form> tag takes several attributes key among them the action and method 
attributes used to accomplish the following:
•	 Action: This attribute is used to specify the file on the server that receives data 

from the form for processing. For example, the action attribute in the form tag 
below specifies a file named register.php that receives registration details after 
the user clicks the submit button:

	 <form action=“register.php”> </form>

16.5.8.2  Form Method Attribute
The Method attribute specifies how the data is to be sent to the web server. The two 
types of methods used are the post and get.
•	 Get Method: If  a “GET” method is used, the data supplied in the form is appended 

at the end of the URL as shown below:
  www.mamacare.com/?login=joel@email.com&password=yz2345
Note that in this example, using get method in a login form is not recommended 
unauthorized users may see actual username and password. The alternative is to use 
the post method.
•	 Post Method: Unlike the GET method, post method does not display submitted 

form data on URL because the parameters are passed as body of a HTTP request.

Activity 16.13 Form attributes
In groups, discuss the difference between the post and get methods in terms of how 
the two attributes send data to the back-end server script. Which method is preferred 
for sending sensitive data such as username and password. Defend your argunment 
using sample HTML pages. 

16.5.9 Form Controls
There are different types of form controls that you can use to facilitate data collection 
information using HTML form. The most common controls include:  text, textarea, 
select, radio buttons, checkboxes, file select, command button and reset buttons.  

16.5.9.1 Text input
Input control is used to capture alphanumeric data such as text, password and hidden. 
For example, the following statement defines text input for capturing username.
<label> Username: 
	 <input type=”text” name=”uname” size = “15” /> 
</label>
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16.5.9.2  Hidden input

Sometimes it is importat to conceal the identity of information entered in the form 
using the input type. This is achieved by use of hidden input type.
To create hidden input, set the input type to hidden as shown below:
	 <input type=“hidden” name=“userid” value=“132”/>

16.5.9.3  Textarea
Textarea control is a multi-line text input used when the user is required to give details 
that may be longer than a single sentence. The attributes used with textarea tag are: 
name, rows, and cols. For example, the following statement defines textarea named 
comment that has 3 rows and 10 columns:
	 <form >
 		  Comments: <br />
		  <textarea rows=”3” cols=”10” name=”comment”>
	 </form>

16.5.9.4  Checkbox
Checkbox controls are input type used when more than one option is required to be 
selected from a list of check boxes. However, the input type attribute must be set to 
checkbox value as shown by the following statement:
<form>

<label><input type=”checkbox” name=”subjects” checked=”checked”> 
Computer </label>

<label><input type=”checkbox” name=”subjects” > Physics </
label>

<label><input type=”checkbox” name=”subjects” > Economics</
label>

</form>

16.5.9.5  Select
The select control also known as dropdown box provides the user with various 
options in form of drop down list, from which a user can select one or more options. 
For example, the following select defines a dropdown for selecting only one option:
<select name=”dropdown”>

<option value=”maths” selected>Mathematics</option>

<option value=”computer”>Computer Science</option>

</select>
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16.5.9.6  Submit and Reset Button
Submit input type used to create a button that automatically submits form data to 
web server. On the other hand, reset is used to refresh (reset)form controls to their 
default values. The following statements creates submit and reset buttons with values 
set to Send and Reset respectively:
<form>
	 <input type=”submit” name=”submit” value=”Send” />
	 <input type=”reset” name=”reset” value=”Reset” />
</form>

The following is an HTML code that implements input, textarea, checkbox, and 
select elements. 

<!DOCTYPE html>
<html>
<head>
<title> Registration</title>
</head>
<body>
<h3> <font color=blue>Please provide the following
details</font></h3>
<form Action= “register.php” Method= “get” >
First Name: <input type= “text” name= “FName” size=”15”><br/>
Last Name: <input type= “text” name= “lname” size=”15”><br/>
Nationality: <input type=”text” name= “country” 
size=”25”><br/>
Phone: <input type= “text” name= “phone” size=”15”><br/>
<label><input type=”checkbox” name=”subjects” 
checked=”checked”> Computer Science</label><br/>
<label><input type=”checkbox” name=”subjects” > Physics</
label><br/>
<label><input type=”checkbox” name=”subjects” > Economics</
label><br/>
<select name=”dropdown”>
<option value=”maths” selected>Mathematics</option>
<option value=”computer”>Computer Science</option>
</select> <br/>
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Comments:<br/>
<textarea rows=”3” cols=”10” name=”comment”> </textarea>
<input type=”submit” name=”submit” value=”Send”>
</form>
</body>
</html>

The illustration shown in Fig. 16.15 shows how form controls discussed earlier are 
displayed:

Text area

Check boxes

Select option

Submit button

Input

Fig. 16.15: Detailed HTML form

Activity 16.14:  Form controls
Create a form that contains textarea, password, checkboxes and select, textarea, read-
only controls and radio buttons. Demonstrate how such a form would be used to post 
collected information to a web server for processing and storage. 
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Assessment Exercise 16.2
1. 	 State three advantages of using commercial web development tools such as 

Dreamweaver over text editors such as Notepad.
2. 	 Explain five main features of an HTML form.
3.	 Explain four types of image formats that can be inserted into a web page.
4. 	 Giving examples, differentiate between the following features 

(a)	 Absolute and relative URL.
(b)	 Post and Get methods..
(c)	 Tag and attribute.

5. 	 Outline a step-by-step procedure you would follow to insert the following 
Dreaweaver objects:
(a)	 Table
(b)	 Form
(c)	 Image

6. 	 Differentiate between GET and POST methods used to senf form content to a 
web server.

16.6  Introduction to HTML5
HTML5 is the fifth revised and newest version of HTML standard offering new 
features that support multimedia content more effectively than ther previous 
versions. In the long run, the new standard is meant to be a replacement for HTML 
4.01, XHTML 1.0, and XHTML. To be supported by majority of browsers, HTML5 
has been developed in collaboration with browser makers. This explains why most 
browsers are supporting the new HTML5 specification. In comparison to HTML4 
and XHTML, HTML5 standard has adopted a flexible hybrid approach by:
•	 Relaxing some of the relaxing some of the rules that were imposed by XHTML 

1.0 version.
•	 Removing elements and attributes deprecated in previous versions of HTML4 

and XHTML.
•	 Removing elements and attributes that had been introduced in previous standards 

but are now superseded by Cascading Style Sheets.
•	 Providing new elements and attributes that allow for backward compatible with 

current and older browsers.

16.6.1  HTML5 Syntax and Structure
HTML5 has a “custom” syntax that is compatible with HTML4 and XHTML  
documents published on the Web. However, the standard does not support most  
SGML-based features inherent in HTML4. In this sections, we discuss some of the 
unique features of HTML5. The code below shows the general syntax of HTML5 
documents.
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<!DOCTYPE html>
<html>
<head>
<meta charset=”UTF-8”>
<title>Title of the document</title>
</head>
<body>
  Content of the document......
</body>
</html> 

The following is an example of an HTML5 document that further demonstrates 
structural elements of HTML5 like header and footer.

<!DOCTYPE html>
<html>
<head>
<meta charset=”utf-8”>
<title>Tutorial Site</title>
</head>
<body>	
<header role=”banner”>
<h2>Sample of HTML5 Document Structure</h2>
<p>Try this page on Explorer, safari, chrome or Mozila.</p>
</header>
  <footer>
  <p>Visit:<a href=”http://tutorcenter.com/”>HTML5 
Tutorial</a></p>
</footer>
</body>   
</html>
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Fig. 16.16 Shows the output on the screen once document is loaded on a browser.

Fig. 16.16: HTML5 structure
In the following subsection, we discuss some of the new features of HTML5 such 
as DOCTYPE declaration, elements and attributes. 

16.6.2  HTML5 Doctype
DOCTYPEs in previous HTML versions were longer because HTML4 and XHTML 
required a reference to SGML-based DTD. HTML5 standard is a radical departure 
from SGML restrictions to new features based on cascading style sheet (CSS) and 
Javascript. This is why doctype is a short statement written as:

<!DOCTYPE html>

16.6.3  New HTML5 Elements
Basically HTML5 is about extending HTML4 and XHTML standards with new rich 
elements and attributes while deprecating or removing some. New elements have 
been introduced in HTML 5 to define structural elements, text-formatting instructions, 
form controls, input types, and multimedia content. The new HTML5 elements may 
be classified into three categories namely: structural, Input, and media elements.
•	 Structural elements: HTML5 offers new semantic elements used to define the 

structure of a web page. Examples of structural elements include <article>, 
<aside>, <header>, <footer>, <main>, <section>, <summary> and <nav>

•	 Input elements: New input types were introduced to address specific form input 
and formatting requirements for user input such as dates, numbers, and telephone 
numbers. Examples of new input types include color, date, datetime, time, email, 
number, tel, url

•	 Media elements: Due to high demand of multimedia content on the web, WC3 
introduced new set of media elements in HTML5 to handle different media types 
without need for additional plugins such as Adobe flash. New media elements 
include <embed>, <audio>, <source>, <track> and <video>
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Table 16.18 provides a summary of new structural, input and media element supported 
by the HTML5 standard:

Elements Description

<article> Represents an independent piece of content of a document, such as 
a blog entry or newspaper article

<aside > Represents a piece of content that is slightly related to the rest of the 
web page.

<audio> Defines an audio file.

<datalist> Together with the a new list attribute for input can be used to create 
combo boxes

<details> Represents additional information or controls which the user can 
obtain on demand

<embed> Defines external interactive content or such as video.

<footer> Represents a footer for a section and can contain information about 
the author, copyright information, et cetera.

<header> Represents a group of introductory or navigational aids.

<track> Defines tracks for video and audio content

<nav> Represents a section of the document intended for navigation.

<progress> Represents a completion of a task, such as downloading or when 
performing a series of expensive operations.

<section> Represents a generic document or application section
<time> Represents a date and/or time.
<video> Defines video or movie content.

Table 16.5: New HTML5 page

Activity 16.15: HTML 5 elements
By doing a research, list and categolize new HTML elements that are supported by 
HTML5.

16.6.4  New HTML5 Inputs Types and Restrictions
In HTML4, we discussed some of the input elements that use the type attribute to 
specify the data input such as text and hidden. HTML5 supports new input types for 
forms that are meant to improve user experience and shorten web development time. 
Table 16.6 shows some of the new input types other than text, hidden and password 
used in the previous versions of HTML.
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Input type Description

datetime Date and time (year, month, day, hour, minute, second, fractions of 
a second) encoded according to ISO 8601 with the time zone set to 
UTC.

datetime-
local

Date and time (year, month, day, hour, minute, second, fractions of 
a second) encoded according to ISO 8601, with no time zone.

date Date (year, month, day) encoded according to ISO 8601

month Date consisting of a year and a month encoded according to ISO 
8601

week Date consisting of  a year and a week number encoded according 
to ISO8601

time Time in hour, minute, seconds, fractional seconds) encoded 
according to ISO8601

number Accepts only numerical values. The step attribute specifies the 
precision, defaulting to 1.

range The range type is used for input fiels that should contain a value 
from a range of numbers.

email Accepts only valid email addresses. If you try to submit a simple 
text, it forces to enter only email address in me@example.com 
format

url Accepts only valid URL address values. If you try to submit a 
simple text, it forces you to provide valid URL address in http://
www.example.com format.

Table 16.6: New HTML5 input types

16.6.5  New Input Attributes
The HTML5 input element has several new attributes to specify the form behaviour 
and format. Some of the new attributes used for restricting input include: min, max, 
required, pattern and step. Other attributes used to enhance user input include. Such 
attributes include autocomplete, autofocus, placeholder, formvalidate, list, formaction, 
form method, and formtarget.
To demonstrate how the new input types and attributes are used, below is sample 
HTML5 document used to get text, telephone, e-mail, date, time and numbers. The 
code also shows how to restrict input for the e-mail and range of number:
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<!DOCTYPE html>
<html lang=”en”>
<head>
<title> New HTML5 input types</title>
<body>
<h1>HTML5 input types test page</h1>
<p>This page contains examples of the new form controls 
that can be used in HTML5.</p>
<form action=”datatype.php” method =”post”>
<p><label for=”text”> Text Element:</label>
<input type=”text” name=”type-text” id=”type-text”></p>
<p><label for=”tel”> Telephone:</label>
<input type=”tel” name=”type-tel” id=”type-tel”></p>
<p><label for=”email”> Email:</label>
<input type=”email” name=”e-mail” id=”e-email” required></p>
<p><label for=”dates”> Date:</label>
<input type=”date” name=”type-date” id=”type-date”></p>
<p><label for=”time”> Time: </label>
<input type=”time” name=”tim” id=”tim”></p>
<p><label for=”number”> Number: </label>
<input type=”number” name=”num” id=”num” min=”0” 
max=”20”></p>
<input type=”submit” value=”Send” name=”button”><br/>
</form>
</body>
</html>
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Fig. 16.17 shows a sample output from HTML5 code above. Note the restrictions 
placed by HTML5 standard on user input such as email that must be provided and 
range of numbers shown by a dropdown list. 

Table 16.17: New HTML5 Input Types and attributes

Activity 16.16: HTML 5 new input types
The new type called tel in HTML5 expects a telephone number. However, tel does 
not enforce any validation because many telephone numbers are alphanumeric or 
start with a + symbol e.g. +250 252 123 123. 
•	 Research on internet the importance of tel input type.
•	 Explain how the new HTML5 pattern (regexp) attribute can be used to validate 

telephone number input.  

16.7  Migrating from HTML4 to HTML5 
For smooth transition from HTML4 to HTML5, there are a number of design and 
factors to be considered. The two key factors that web developer need to consider 
are use of deprecated elements, and browser support.  
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16.7.1  Deprecated elements and attribute
Deprecated elements are features that have been rendered obsolete but that browsers 
may continue supporting them. Examples of deprecated features are border attribute 
used with <img/> element and name attribute in the anchor <a> element. Other 
deprecated elements and attributes include: <applet>,  <acronym>, <center>, <font>, 
<noframes>, <command> and <tt>.

16.7.2  Browser support
Browser support is one of the key factors to consider when migrating from HTML4 
to HTML5. Fortunately, since HTML5 became a W3C recommendation in October, 
2014, major browsers like Safari, Chrome, Firefox, Opera and Internet Explorer 9.0 
have started supporting to HTML5 features. Furthermore, most web browsers that 
come pre-installed on mobile phones that run on iOS and Android operating systems 
have support for HTML5 features.

Activity 16.17: Migrating from HTML4 to HTML5
1.	 HTML5 may be a disruptive technology that will bring most of the sites on the 

web down due to the following issues:
•	 Removal of support for HTML frameset element in HTML5 standard.
•	 Removal of deprecated elements and attributes  supported by earlier versions 

of HTML. 
•	 Tables should not be used to create web page layout. Instead web developers 

are required to use CSS rules
•	 Attributes that let people create those perfectly laid-out tables, like align, 

bgcolor, border, cellpadding, cellspacing, height, nowrap, rules, valign, and 
width are gone.

2.	 Discus the difference between HTML4 and HTML5. What are the advantages 
of using each of them. 

3.	 Discuss previous versions of HTML that have been standardized by a consortium 
known as W3C (W3C stands for World Wide  Web Consortium).

4.	 Explain at least 3 adventages of migrating from HTML4 to HTML5!

Assessment Exercise 16.3
1.	 Define the following terms used in HTML 5:

(a)	 Deprecated attributes
(b)	 Pattern
(c)	 Form validation

2.	 Distinguish between HTML4 and HTML5 syntax in terms of elements, case 
sensitivity, and input restrictions.
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3.	 Identify at least three factors that are making it deficult for older browsers to 
support HTML 5. 

4.	 Once you have created a website on your local machine, demonstrate how you 
would validate conformity to HTML5 specifications.

Unit Test 16
1.	 Define the term web server.
2.	 Differentiate between internet and web.
3.	 A program, such as Mozilla Firefox that that lets a user display HTML-developed 

web pages is referred to as _________.
4.	 The two standard languages used to create web pages are_____ and _____.
5.	 Write sample HTML statements to demonstrate how to insert the following: 

(a)	 Scrolling images at the top part of a page
(b)	 An image of a house
(c)	 Table with 3 rows and 5 columns

6.	 Explain statement: <form action=“student.php” method=“get”> 
7.	 Explain at least four types of controls that are used to create a form object.
8.	 Differentiate between the following terms:

(i)	 Hypertext and hyperlink
(ii)	 XHTML and HTML5 standards

9.	 Giving examples, explain restrictions that were imposed by XHTML that have 
been relaxed in HTML5.

10.	 Discuss three key factors that a web developer should consider before developing 
a website.

11.	 Build a static website for your school that consists of five hyperlinked pages 
containing the following information:
(a)	 Home page – This is the index page containing general information about 

the school.
(b)	 About page – Contains mission, vision and background (History) of the 

school.
(c)	 Academic pages – Contains subjects, teachers and school programmes.
(d)	 Gallery – Contains important photos taken during school events.
(e)	 Contact page – Contains postal, email, web and mobile phone contacts of 

the school administration.



CASCADING STYLE SHEET

Key Competency
By the end of this unit, you should be able to build standards compliance web pages 
using CSS.

Unit Outline
•	 Definition of CSS
•	 HTML styling and disadvantages
•	 Comparison between HTML and CSS Styling
•	 CSS syntax
•	 Adding CSS to web pages
•	 CSS Styles
•	 Creating CSS pages from scratch

Introduction
Cascading Style Sheets (CSS) uses rules to describe to the browser how HTML 
elements are to be displayed on the screen. We use CSS properties to come up with 
rules that  format one or many HTML pages all at once. These properties generally 
fall into one of two categories:

Presentation 
How to control things like the colour of text, the fonts you want to use and the size 
of those fonts, how to add background colours to pages (or parts of a page), and how 
to add background images.

Layout 
How to control where the different elements are positioned on the screen. You will 
also learn how to develop a CSS page from scratch. 

17.1	 Definition of CSS

Activity 17.1: Research on CSS and HTML
Do a research on cascading style sheets and find out the following:
1.	 What is the difference between HTML and CSS?
2.	 What are the advantages it offers to website developers.

Unit 17
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CSS is a style language that defines the layouts of HTML documents in a more efficient 
manner. Unlike in HTML where we used tables to define strict layouts, with CSS 
there are no tables. Instead we define page layout styles using rules that are easy to 
apply across entire websites and that can easily be reused. CSS uses fonts, colors, 
lines, margins, height, width, background images, advanced positions etc. to define 
neat page layout styles. 
Unlike some time back when few web browsers could understand CSS rules, most 
modern browsers support CSS. However, when developing CSS pages, test them in 
different browsers to ensure that they are displaying correctly across board. 

17.2 HTML Styling and disadvantages
HTML or Hypertext Markup Language is the standard and most basic language used 
to create web pages. It has a very simple code structure that makes it extremely user 
friendly, to learn and use. It has a few keywords (known as tags) that are dedicated to 
formatting text i.e. telling the browser how to display text. However, HTML suffers 
from the following shortcomings:

(a)	 In formatting, HTML is weak and cumbersome. Repeated blocks of the same 
code when formatting large documents increases memory usage and slows down 
web page loading time.

(b)	 The inclusion of formatting text together with page content in the same HTML 
file makes web pages to be inefficient and lack consistency throughout the 
website.

(c)	 HTML does not enforce strict coding standards. For example, you can type <br> 
without a terminating tag (i.e. without a terminating tag <br/> ). This may lead 
to language misunderstanding and problems when different browsers display 
the same web page differently. 

(d)	 HTML is static in nature. It does not have control structures like other 
programming languages.

(e)	 HTML becomes complex when used to code large pages. 

17.2.1 Advantages of CSS
CSS addresses the need for functionally effective and efficient web designs. CSS has 
the following advantages: 
(a)	 Improves Site Speed: The web pages and CSS stylesheet are small in size hence 

it makes the website to load faster and have efficient utilization of bandwidth.
(b)	 Centralised Format Styling: Changing a global stylesheet affects the entire site. 

Developers don’t have to individually change each page in the website separately. 
(c)	 Flexibility: CSS can be combined with a Content Management System (CMS) 

to create content submission forms that can allow the user to easily select the 
layout of an article on-the-fly without the need for rigorous coding.

(d)	 Consistency: CSS has inheritance properties that can allow “cascading” of a 
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global stylesheet that can be used to style an entire site. If a situation arises in 
which you need to change styles across the site, simply edit a few rules in the 
global stylesheet.

17.3 Comparison between HTML and CSS styling

HTML CSS
1. Simple structure. Easy to learn. 1. Simple but more effort needed to learn.
2. Formatting repeated on all pages. 2. All formatting rules held in one stylesheet file.
3. HTML pages are heavy and load slowly. 3. CSS pages are light and load faster in browser.
4. Difficult to apply same formats across web pages. 4. Applies consistent formats across web pages.
5. Difficult to adapt pages to mobile displays. 5. CSS adapts pages to mobile devices easily.

Table 17.1: Comparison between HTML and CSS

We can therefore conclude that while HTML is a markup language for building 
hypertext web pages, CSS is a rule based language that describes how various HTML 
page formats and layouts will be displayed on the screen.

17.4 CSS Syntax
We create CSS rule following a particular specific syntax. The format of a CSS rule 
set can be summarised as follows:
1.	 Start with a selector. The selector points to the HTML element you want to 	
	 format. 
2.	 Declaration block. It has a property and a value surrounded by curly 		
	 brackets. It performs the actual formating of the selected element. 
Figure 17. 1 below summarises this:

Figure 17.1: CSS syntax
In this case, the rule specifies that all the level 1 headings will be pink in color and 
have a font size of 10. 

17.4.1 CSS selectors
CSS selectors are used to point to or find HTML elements based on their defined 
names, IDs, attribute, class etc. Without a selector, the browser will not know which 
element to display in a particular format. There are several types of selectors:

17.4.1.1 Element selector
It selects an element based on its known HTML name e.g. <p>, <h2> etc. For example, 
if we wish the rtext in a paragraph to have font size 12 and be blue in color, our CSS 
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syntax would be written as follows below:
	 p {

		  text-align: center;

		  font-size: 12;

		  color: blue;

	     }

17.4.1.2 The ID selector
The id selector uses the id attribute in HTML to select a particular element. When 
creating id elements in HTML, make each one of them unique within a page to 
avoid reference conflicts!
An element with a specific id is selected by writing a hash (#) character, followed 
by the id of the element.
For example, if we have the HTML element with id=”globe”:
	 #globe {

			   color: green;

			   font-size: 12;

		  }

17.4.1.3 The Class selector
The class selector selects elements which are part of a particular class attribute. Write 
a period (.) followed by the name of the class. For example, if we have a class called 
wise in HTML e.g. class=”center” and we want all its elements to be orange 
and center-aligned we proceed as follows:
	 .center {

    			   text-align: center;

    			   color: orange;

		  }

NB: A class name in HTML cannot start with a number.

17.4.2 CSS grouping selectors
The grouping feature enables the CSS code to be compact and reduces unnecessary 
repetition. For example, you could have CSS code which looks like the one below:
	 h1 {

    		  text-align: center;

    		  color: red;

		  }
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	 h3 {

		  text-align: center;

		  color: red;

		  }

	 p {

    		  text-align: center;

   		  color: blue;

		  }

The above code can be grouped together as follows with all the selectors typed on 
the same line:

	 h1, h3, p {

		  color: blue;    

		  text-align: center;

    		  }

17.4.3 CSS comments
A comment is a string of non-executable text included in code as a means of explaining  
the code. It is helpful when you or someone else edits the source code at a later date.
In CSS, a comment starts with /* and ends with */. A comment can span more than 
one line. The example below demonstrates how comments are used:
	 h1 {
    		  font-size: 14;
    		  /* This sets the font size at 14 */
    		  text-align: center;
		  }
		  /* This aligns
		  the text at the
		  center */

17.4.4 CSS units
Measurement in CSS can be expressed using several different units. There are two 
types of units used to express length:
1.	 Relative length units: they specify a length as compared to another length 	
	 e.g. if   the font is 10 points then a length can be expressed as two times the 	
	 current font size.
2.	 Absolute length units: these lengths are fixed. A length expressed in any 	
	 of these will appear as exactly that size e.g. 10cm.
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17.4.4.1 Absolute length units
Unit		  Description 
em		  Relative to size of current element e.g. 2em means 2 times the size 	
		  of the current font
vw		  Relative to 1% size of current viewport. The viewport is the 		
		  browser window size. e.g. if the browser has width 50cm e.g. 
		  1vw = 0.5cm.

17.4.4.2 Relative length units
Unit		  Description 
px		  Pixel. 1px = 1/96th of 1 inch.
pt		  Points. 1pt = 1/72 of 1 inch.
mm		  Millimeter e.g. 1mm. 
NB: The margin, width, padding, border width, font-size, etc. all require unit 
specifications when  designing your web page.

Activity 17.2: Creating  simple HTML page 
Open a text editor and create the following HTML page. Save your page as First.
css as shown in Figure 17.2(a). If you are using Notepad in windows, select All files 
(*.*) in the Save as type box (Figure 17.2[a]) when saving to avoid saving it as 	
First.css.txt

<html>
<head>
<title>This is a basic CSS Page</title>
<style type=“text/css”> 
  .myFirstStyle { 
  font-family: Calibri;
  font-weight: bold;
  color: #FF0000; 
  } 
</style>
</head>
<body>
<p class=“myFirstStyle”> Love, peace and unity among 
citizens is good for national development </p>
</body>
</html>
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You can now open the page in a browser. What happens?

NB: In this example, .myFirstStyle is a Class. A class is a blue print on which we 
can define styles which can be accessed and applied to many different CSS sheets. 
You define a style by starting with a period (.) as shown above. It defines a class style 
which can be referenced as <p class=”myFirstStyle”>.

Figure 17.2(a): Saving a CSS page

Figure 17.2(b): Saved document
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17.5 Colors
One of the most important formatting features in web design and development has 
to do with the right application of color. Color can be applied to text (font) or the 
background of a section or entire page.
In CSS, color can be specified in either of three ways:
1.	 Using a valid color name as a value in a declaration e.g. “red”, “blue”
2.	 Using a valid hexadecimal (HEX) value e.g. #ff1100, #BB00CC
3.	 Using the Red, Green, Blue (RGB) scheme e.g. “rgb(200,1,1)”
Table 17.2 below shows the values representing some of the most common colors.

17.5.1 Using color names
The following pallete in Figure 17.3 shows the various colors and their names:

Figure 17.3: Colors and their equivalent names in CSS

17.5.2 Using HEX values
Hexadecimal values are made of numbers that range from 0 - 9, A-F (where A = 10 
and F=15). Some common HEX values are shown below in Figure 17.4: 

 

Figure 17.4: Colors and their equivalent HEX values in CSS
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17.5.3 Using RGB values
RGB stands for the three primary colors of Red, Green and Blue. By combining these 
colors in varying percentages or ratios, it is possible to generate the other colors. 
Each color has an array that ranges from 0-255. The following are examples of RGB 
colors that can be generated using the stated ratios: Figure 17.5 below shows various 
RGB colors.

 

Figure 17.5: Colors and their equivalent RGB values in CSS
After briefly looking at the syntax, let us now delve into the specifics of how to 
include CSS in HTML pages.

17.6 Adding CSS to web pages

Activity 17.3: CSS coding strategies
By doing a research, explain the meaning of the terms below:
1.	 External CSS
2.	 Internal CSS
3.	 Inline CSS
Write notes about each of these topics. Present to the class your findings.

17.6.1 External CSS
An external style sheet is ideal when the style is applied to many pages. With an 
external style sheet, you can change the look of an entire web site by making changes 
to the CSS stylesheet file. Each page must link to the style sheet using the <link> 
tag. The <link> tag goes inside the head section as shown below: 
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<head>
<link rel=”stylesheet” type=”text/css” href=”ourstyle.
css” />
</head>

An external style sheet can be written in any text editor. The file should not contain 
any html tags. Your stylesheet should be saved with a .css extension. An example 
of a style sheet file text is shown below: 
	 h1 {
  		  color:blue;
  		  } 
	 P  {
  		  margin-left:20px;
		  color:orange;
  		  } 
	 body {
  		  background-image:url(“images/homepage.jpg”);
  		  } 
Do not leave spaces between the property value and the units e.g. should be: 
	 margin-left:20px;
but NOT:
	 margin-left: 20px;

Activity 17.4: External CSS example
Create a folder on the Desktop and name it MyCSS. Type the stylesheet file text above 
in a blank Notepad document. Save the notepad file as external.css in the MyCSS 
folder. Now open a new Notepad document and type the following HTML code. 
<!DOCTYPE html>
<html>
<head>
<link rel=“stylesheet” type=“text/css” href=“external.
css”>
</head>
<body>
<h1>Drug abuse and sexual immorality is not good.</h1>
<p>A good citizen pays taxes and avoids corruption.</p>
</body>
</html>
1.	 Save the above code as htmlcss.html in the MyCSS folder.
2.	 Download a *.jpg image and save it in the same folder as the CSS and 		
	 HTML files. Rename it as homepage.jpg.
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3.	 Load your htmlcss.html file in your localhost web server as guided by 
	 the teacher. What happens?  

17.6.2 Internal CSS
An internal css applies styles to a single page or style sheet. An internal style sheet 
should be used when a single document has a unique style i.e a single page has styles 
that are not needed on other pages. You define internal styles in the head section of 
a HTML page, by using the <style> tag, as shown in Fig. 17.6: 

Figure 17.6: Internal css code in a text editor

17.6.3 Inline CSS 
An inline style loses many of the advantages of style sheets by mixing content with 
presentation. Do not use this method repeatedly.
To use inline styles, make sure to use the style attribute in the relevant tag. The style 
attribute contains CSS properties. The example below shows thow he paragraphs 
color and the left margin can be changed. 

<p style=“color:green;margin-left:10px”>This is a 
paragraph.</p>
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Each CSS property (the font-size property in this case) is followed by a colon and a 
value. Attribute style specifies the style for an element.

17.7 CSS styles 

Activity 17.5: Fonts 
From you previous knowledge working with text in other applications, answer the 
following questions:
1.	 List at least 4 font types used in CSS. 
2.	 What are the characteristics that the font types should have?

17.7.1 Fonts 
CSS has two types of font families:
1.	 Generic font families: a group of fonts that have a similar look and feel 		
	 e.g. Serif, Monospace, Arial etc.
2. 	 A specific font family: e.g. Times New Roman, Courier New etc.
The font family in CSS is set by specifying the font-family property. Sometimes, 
the browser may not be able to support the font specified. It is therefore wise to 
overload the font-family property with many font values separated by commas 
in order to create a fall back system i.e. its like telling the browser to display using 
the next font specified if the first cannot be found.
If the name of the font-family has more than one words, it must appear between quote  
(“ ”) marks. The example below illustrates this strategy:
	 p {
    		 font-family:“Times New Roman”,Times,serif;
		  font-size:12px;
		  }

17.7.1.1 Font size
Use the font-size property to set the size of the font:
	 p {
    		 font-size:6em;
		  }  
	 h1{
		  font-size:12px;
		  }

17.7.1.2 Font style
In CSS font-style property is used to display the font either in italics or not. The 
following example shows how this property can be used: 
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	 p.italic {
    			  font-style:italic; /*display in italics*/
			   }  
	 p.normal{
			   font-style:normal; /*display normal text*/
			   }
	 p.oblique{
			   font-style:oblique; /*similar to italics*/
			   }

Activity 17.6: Fonts example
Open Notepad. Create the following and save it as myfonts.css in your folder.
	 h1 {

    		  font-family:Arial, Helvetica, sans-serif;

		  color:green;

		  }

	 h2 {

    		  font-family:“Times New Roman”;

		  }

	 h3 {

    		  font-family:“Courier New”,Courier,monospace;

		  color:red;

		  }

	 h4 {

    		  font-family:“Times New Roman”;

		  font-style:italic;

		  color:#00F;

		  font-size:30px;

		  }

Now create a HTML file with the following code and save it as myfonts.html.
<!DOCTYPE html>
<html>
<head>
<link rel=“stylesheet” type=“text/css” href=“myfonts.css”>
</head>
<body>
<h1>Drug abuse and sexual immorality is not good.</h1>
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<h2>A good citizen pays taxes and avoids corruption.</h2>
<h3>It is good manners to help the visually challenged 
citizen to cross the road.</h3>
<h4>The girl child should be taken to school just like 
the boy child.</h4>
</body>
</html>	
Now load your web page in your localhost server. 
The result should be as shown in Figure 17.7 below:

Figure 17.7: Fonts in CSS

17.7.2 Margins 

Activity 17.7: Margins
What is a margin? Why are margins important?

In CSS, margins are spaces that are generated around elements. The margin property 
is used to achieve this by specifying the size of the white space outside the border. 
We have the margin-top, margin left, margin right and margin-
bottom properties. The following example shows how you can apply this property 
to set the margind for a <p> element. 
	 p {
    		 margin-top:90px;
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    	margin-bottom:80px;
    	margin-right:50px;
    	margin-left:100px;
	 }

Activity 17.8: Margins example
Create the following HTML page and save it as myMargins.html. What type of CSS 
have we used? Load the HTML page in your server. What do you see?
<!DOCTYPE html>

<html>

<head>

<style>

	 p {

    		  background-color:yellow;	 }

	 p.ex {

    		  border:2px solid blue;

    		  margin-top:100px;

    		  margin-bottom:100px;

    		  margin-right:150px;

    		  margin-left:80px;		  } 

</style>

</head>

<body>

<h2>Specifying Margins for a Paragraph Element:</h2>

<p>This paragraph has no specified margins.</p>

<p class=“ex”>This paragraph has a border and the margins.</p>

</body>

</html>

 
 

Figure 17.8: Margins
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17.7.3 Display
Elements in HTML can be displayed either in block or inline value mode by default. 
1.	 Block level element: an element that displays in block mode fills the entire 	
	 width of the screen by default and always starts on a new line e.g. the 		
	 <div>,<form>,<header>,<p>, <h1> etc.
2.	 Inline level element: An inline element does not start on a new line. It 		
	 takes only the width that is required. Examples include <span>,<a> 		
	 and <img>

17.7.3.1 Hiding elements
Use the display:none; declaration to hide elements that you wish not to appear 
on the screen e.g. 

Activity 17.9: Hiding elements
Create the following HTML file and run it to see what happens:
<!DOCTYPE html>
<html>
<head>
<style>
h1.hide {
    display:none;
}
</style>
</head>
<body>
<h1>This heading will be visible</h1>
<h1 class=“hide”>This heading will be hidden</h1>
</body>
</html>  

17.7.3.2 Overiding default display values
The <li> element creates a block list by default. However, it is possible to override 
it so that it can can be displayed as an inline element. One good example is when you 
create menus at the top of your page. Try out the following and load it in your browser:
<!DOCTYPE html>

<html>

<head>

<style>

li {
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    display: inline;

}

</style>

</head>

<body>

<p>Display a list of links as a horizontal menu:</p>

<ul>

<li><a href=“/myFolder/home.html”>Home</a></li>

<li><a href=“/myFolder/about.html”>About</a></li>

<li><a href=“/myFolder/Services.html”>Services</a></li>

</ul>

</body>

</html>   
If you do this correctly, you should get a web page like the one shown in Figure 17.9 
below:

Figure 17.9:Inline dispaly of <li> elements

17.7.4 Background 
The background of a web page, division or text is very important. It determines 
the general ambience of the web page to the visitor. There are many background 
properties. A few of them include:
1.	 background-color: used to set the background color of an element.

	 h1 {
    		 background-color:green;
		  }
This means all <h1> elements (headings) will have a green background. 
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2.	 background-image: used to set an image as the background of an 		
	 element. If the image is small, it repeats by default until it fills the space.

	 body {
    		 background-image:url(“flower.gif”);
		  }
This will apply the image flower.gif to the body section of the web page. In case 
you do not want the image to repeat, then you can modify the CSS rule as follows:

	 body {
    		 background-image:url(“flower.gif”);
		  background-repeat:no-repeat;
		  }

3.	 background-attachment:this is used to fix an image in a particular 	
	 position so that it does not  scroll with the rest of the page.

	 body {
    		 background-image:url(“flower.gif”);
		  background-repeat:no-repeat;
		  background-position:left top;
		  background-attachment:fixed;
		  }
NB: It is also possible to use shorthand to specify background properties. This can 
be achieved as shown below:	
   
body {
 background:#ffffff url(“backg.png”) no-repeat right top;
	 }

Activity 17.10: Background example
Create the following HTML page and save it as background.html. Download an  
image of the flag of Rwanda and rename it as flag.jpg. Save both in myFolder.  
<!DOCTYPE html>
<html>
<head> 
<style>
	 body {
    		 background-image:url(“flag.png”);
    		 background-color:#ffccc0;
		  background-repeat:no-repeat;
    		 background-position:right top;
    		 margin-right:200px;
    		 background-attachment:fixed;
		  }
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</style>
</head>
<body>
<h1>Hello to All!</h1>
<p>Plese scroll down. Does the image also scroll? </p>
<p>Plese scroll down. Does the image also scroll? </p>
<p>Plese scroll down. Does the image also scroll? </p>
</body>
</html>
NB: In the Notepad document background.html that you create, make sure the 
paragraphs starting with <p> are many i.e. 20 and above so as to fill and overflow 
the web page at runtime. If the web page is not full, scroll bars will not appear hence 
you will not be able to scroll. The result of this HTML code is as shown in Figure 
17.10 below:

 

Figure 17.10:Background color and image that is fixed

17.7.5 Positioning 
The positioning properties allow you to position an element on the screen. It can 
help you to define which element will be behind another, or what should happen if 
the content of an element becomes too big.
You can position elements using the top, bottom, left, and right properties. You must 
set the position property before this values can work. They also work differently 
depending on the positioning method. There are four different positioning methods. 
This includes: 

17.7.5.1  Static Positioning 
HTML elements have static positioning. A static positioned element follows the 
normal flow of a page. Static positioned elements are not affected by the top, bottom, 
left, and right properties of CSS.
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17.7.5.2  Fixed Positioning 
An element with fixed position is positioned stationary relative to the browser window. 
It does not move even when the window is scrolled. A CSS code extract that fixes an 
element can take the following form: 
	 p.pos_fixed {	 /*the paragraph element*/ 

  			   position:fixed;

  			   top:40px; 

  			   right:5px; 

 			   } 

NB: Some browsers like Internet Explorer support the fixed value only if a !DOCTYPE 
is specified. 

17.7.5.3   Relative Positioning 
A relative positioned element is positioned relative to its normal position.

Example 
	 h2.pos_left  { 
  		  position:relative; 
  		  left:-20px; 
  		  } 
	 h2.pos_right { 
		  position:relative;
 		  left:20px;
 		  } 

The content of relatively positioned elements can be moved and overlap other 
elements, but the reserved space for the element is still preserved in the normal flow.
Example
	 h2.pos_top  { 
		  position:relative;
 		  top:-50px;
  		  }

Relatively positioned elements are often used as container blocks for absolutely 
positioned elements. 

Absolute Positioning 
An absolute position element is positioned relative to the first parent element that 
has a position other than static. If no such element is found, the containing block is 
<html>:
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Example 
	 h2 {
		  position:absolute; 
		  left:100px; 
		  top:150px; 
 		  }
Absolutely positioned elements are removed from the normal flow. The document 
and other elements behave like the absolutely positioned element does not exist. 
Absolutely positioned elements can overlap other elements. 

17.7.6 Floating

Activity 17.11: CSS float property
By doing a research on the internet explain the CSS float property

With CSS float, an element can be pushed to the left or right, allowing other elements 
to wrap around it. Float is very often used for images, but it is also useful when 
working with layouts. 

17.7.6.1  How Elements Float 
Elements are floated horizontally; Either left or right on the page, not up or down. 
A floated element will move as far to the left or right as it can. Usually this means all 
the way to the left or right of the containing element. The elements after the floating 
element will flow around it. The elements before the floating element will not be 
affected. If an image is floated to the right, a following text flows around it, to the left:

Example 
	 img { 
		  float:right; 
 		  }

17.7.6.2  Floating Elements Next to Each Other 
If you place several floating elements after each other, they will float next to each 
other if there is room. Here we have made an image gallery using the float property: 

Example
	 .thumbnail { 
		  float:left;
 		  width:110px;
 		  height:90px; 
		  margin:5px;
 	 }
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17.7.6.3 Turning off Float - Using Clear
Elements after the floating element will flow around it. To avoid this, use the clear 
property. The clear property specifies which sides of an element other floating elements 
are not allowed. 

Add a text line into the image gallery, using the clear property: 

Example
	 .text_line{ 
		  clear:both;
 		  } 

After learning all the above concepts, it is time for you to do the following Activity 
which will apply the concepts learned.

17.7.7	 Padding
In CSS padding properties are used to create or generate space around content. This 
is seen as white space between the element content and the element border. When 
you set a padding value, it clears the area around the content within the inside of the 
margin. Figure 17.11 below represents this concept in a block diagram.
    

Figure 17.11: CSS padding

When specifying the padding, we use the following CSS properties:
1.	 p addi n g- t o p : specifies the top padding of an element.
2.	 p addi n g- r i ght : specifies the right padding of an element.
3.	 p addi n g- bo t t o m : specifies the bottom padding of an element.
4.	 p addi n g- l eft : specifies the left padding of an element.
When specifying the padding value associated to a particular property, you can use 
the following units:
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a)	 length: you can specify this by using pixels (px), points (pt), Centimetres (cm) 
etc.

b)	 percentage(%): it specifies the padding space in terms of the width of the 
containing element.

c)	 inherit: specifies that the padding should be inherited from a parent element.
For purposes of simplicity, we shall demonstrate how to use the pixels to specify 
the padding value. 
Example: If you wish to specify the padding around the element p then do the 
following:

p  {
    p addi n g- t o p : 20p x;
    p addi n g- r i ght : 20p x;
    p addi n g- bo t t o m : 20p x;
    p addi n g- l eft : 50p x;

	 }
The above CSS code can be summarised as:

p  {
    p addi n g: 20p x  20p x  20p x  50p x;

	 }

Activity 17.12: Setting the padding of an element
Open Notepad and type the following text exactly the way it is below:

<! D O C T Y PE  ht m l  PU B L I C  “ - //W 3 C //D T D  X H T M L  1.0 
T r an s i t i o n al //E N ”
“ ht t p :/ / w w w . w 3 .o r g/ T R / x ht m l 1/ D T D / x ht m l 1-
t r an s i t i o n al .dt d”>
<ht m l >
<head>
<m et a ht t p - eq u i v =”C o n t en t - t y p e” co n t en t =” t ex t /ht m l ; 
char s et =U T F - 8” />
<t i t l e> C S S  Paddi n g E x am p l e</t i t l e>
<m et a n am e=”M S S m ar t T ags Pr ev en t Par s i n g” co n t en t =”t r u e” 
/>
<l i n k  r el =”s t y l es heet ” t y p e=”t ex t /cs s ” hr ef=”C SSF i l es /
p addi n g.cs s ”/>
</head>
<bo dy >
<h2> A p p l y i n g Paddi n g t o  an  E l em en t  i n  C S S:</h2>
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<p > I n  t hi s  p ar agr ap h,  N O  p addi n g has  been  ap p l i ed.</
p >
<p  cl as s =”o n e”> I n  t hi s  p ar agr ap h,  Y E S  p addi n g o f 
50p x  l eft ,  20p x  r i ght ,  20p x  t o p  an d 20p x  bo t t o m  has  
been  ap p l i ed.</p >
</bo dy >
</ht m l >

Save the text file as padding.html in a folder of your choice. In this case we have 
saved it in the htdocs folder of the WAMP server. 

Now create the following CSS file too and save save it as padding.css in a folder of 
your choice. In this case, we saved ours in a folder called CSSFiles which is within 
htdocs folder.

p .o n e {
    bo r der :1p x  s o l i d r ed;
    back gr o u n d- co l o r :yel l o w ;
    p addi n g:20p x  20p x  20p x  50p x;
	 }
Now load your padding.html file in your web server. What do you see? You should 
get the following result as illustrated by Figure 17.12.

Figure 17.12: Applying padding to a paragraph
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17.7.8	 Borders
Using CSS, a border can be specified around an element like a paragraph. You specify 
a border using the bo r der - s t y l e property. The style of the border line can also 
be specified using various values as follows:
	 • do t t ed: defines a dotted border around the specified element.
	 •  das hed: defines a dashed border around the specified element.
	 •  s o l i d: defines a solid border around an element. 
We can define different elements with different border styles as follows:
	 p .das hed {bo r der - s t y l e: das hed;}
	 p .do t t ed {bo r der - s t y l e: do t t ed;}
	 p .s o l i d {bo r der - s t y l e: s o l i d;}

The results of such specifications in CSS would resemble the illustrations in Figure 
17.13 below:
 

Figure 17.13: Different border styles

Activity 17.13: Setting the padding of an element
Open Notepad and type the following text exactly the way it is below then save the 
file as borders.html:
<! D O C T Y PE  ht m l  PU B L I C  “ - //W 3 C //D T D  X H T M L  1.0 
T r an s i t i o n al //E N ”
“ ht t p :/ / w w w . w 3 .o r g/ T R / x ht m l 1/ D T D / x ht m l 1-
t r an s i t i o n al .dt d”>
<ht m l >
<head>
<m et a ht t p - eq u i v =”C o n t en t - t y p e” co n t en t =” t ex t /ht m l ; 
char s et =U T F - 8” />
<t i t l e> C S S  Paddi n g E x am p l e</t i t l e>
<m et a n am e=”M S S m ar t T ags Pr ev en t Par s i n g” co n t en t =”t r u e” 
/>
<l i n k  r el =”s t y l es heet ” t y p e=”t ex t /cs s ” hr ef=”C SSF i l es /
bo r der s .cs s ”/>
</head>
<bo dy >
<h2> A p p l y i n g B o r der s  t o  an  E l em en t  i n  C S S:</h2>
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<p > I n  t hi s  p ar agr ap h,  N O  B O R D E R  has  been  ap p l i ed.</p >
<p  cl as s =”das hed”> I n  t hi s  p ar agr ap h,  Y E S  a D A S H E D  
bo r der  i s  ap p l i ed.</p >
<p  cl as s =”s o l i d”> I n  t hi s  p ar agr ap h,  Y E S  a S O L I D  
bo r der  i s  ap p l i ed.</p >
<p  cl as s =”do t t ed”> I n  t hi s  p ar agr ap h,  Y E S  a D O T T E D  
bo r der  i s  ap p l i ed.</p >
</bo dy >
</ht m l >

Now create the following in Notepad too and save it as borders.css. 
	 p .das hed {bo r der - s t y l e: das hed;}
	 p .do t t ed {bo r der - s t y l e: do t t ed;}
	 p .s o l i d {bo r der - s t y l e: s o l i d;}

After that load the HTML file (borders.html) in your browser. What do you see? Your 
results should be similar to what is shown in Fig. 17.14 below:
  

Figure 17.14: Borders in CSS

17.8 Creating a CSS page from Scratch

Activity 17.14: Creating CSS page example
Assuming you want to develop a CSS web page which contains information about 
recent discoveries in space science. You are told that the website should have a layout 
similar to Figure 17.15 below. Follow the steps provided to finally create your page.
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Figure 17.15 CSS webpage layout

1.	 Start by creating the following directory structure on the desktop or any other 
location in your computer. If you are using WAMP server, create it in the www 
folder because this is the default folder where Apache sever looks for websites.

	 Main Folder: myFolder
	 Subfolders within myFolder -- CSSFiles; Pictures.
2.	 Open a text editor and then create the following basic HTML page:
<html>
<head>
<title> Respect for People with Special Needs </title>
</head>
 <body>
 </body>
</html>
Save the page as index.html in the htdocs directory.

3.	 Looking at Figure 17.15, the width of the page is 760 pixels. We therefore, start 
by creating a container on the page which is this wide. Let the container be 
centered on the page. Nothing will float outside this width on the page. Between 
the <body>  </body> tags insert container creating text as shown below: 

<html>
<head>
<title> Respect for People with Special Needs </title>
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</head>
<body>
<div id=“help-container”
Welcome to this page. We care for people who have special 
needs like the visually challenged, deaf, dumb and those 
with physical challenges.
</div>
</body>
</html>

A container called help-container has now been created by HTML on the page. Save 
and exit.

4.	 Create a new blank text file. Save it as rulestyles.css in the CSSFiles folder. 
Enter the following text in the file and save.

	 #help-container {
					     }
The # placed before the ID tells the browser that we are selecting a container ID 
that we have already defined. If we were selecting a class we would start with a (.) 
instead for example .help-stars{} if such a class did exist.
We use IDs to define elements that appear once on a page. We use classes for elements 
that appear many times on a page e.g. font formats.
5.	 To add background color to our container, we can do the following:
	 #help-container {
       			   background: blue;
       			   width: 760px;
				    color:white;
				    font-size:30px;
				    }

6.	 After saving (5) above, open index.html and modify it to look as below though 
do not include the line numbers.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
1.	 <html>

2.	 <head>

3.	 <meta http-equiv=“Content-type” content=“text/html; 
charset=UTF-8” />
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4.	 <title> We Care for Special People </title>

5.	 <link rel=“stylesheet” type=“text/css” href=“CSSFiles/
galaxy.css” />

6.	 <style type=“text/css” media=“all”>@import “CSSFiles/
rulestyles.css”;</style> 

7.	 </head>

8.	 <body>

9.	 <div id=“help-container”>
10.	Welcome to this page. We care for people who have special 

needs like the visually challenged, deaf, dumb and those 
with physical challenges.

11.	</div>

12.	</body>

13.	</html>

Explanations:
Line 3: it sets the parsing text format.
Line 5: it links the HTML file to the CSS file or style sheet.
Line 6: works the same as line 5. You can do without it if you have line 5.
Line 9: calls the CSS ID in the div container.
Line 10: applies the CSS ID formats on the text and div container.  
7.	 Start your server. In the browser type: localhost/htdocs and then press the Enter 

key. You should be able to see the results as shown in Figure 17.16 below:

Figure 17.16: CSS page with a <DIV> element which has a blue background. 
8.	 Notice the container seems to leave some white space on the left and top of the 

screen. We can be able to center it on the screen by using the margin =auto; 
property in the CSS file. Here we go:

Notice the comma between html and body: it stands for or
	 html, body {
			   margin:0;
			   padding:0;
			   }
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	 #help-container {
       			   background:pink;
       			   margin:auto;
       			   width:760px;
			   }
The first three lines forces the margin and padding to start from 0 since by default 
html usually leaves space on the left and top of the page as margins and padding. 
If you refresh your web page, you will notice that the container now starts from the 
very edge. 
9.	 Good. We are now ready to add the various divisions of the page by dividing 

the “help-container” in the HTML file. We want to create the layout in Figure 
17.1. So we add new divs each with its own unique id. Here we go:

		  <div id=“help-container”>
		  <div id=“menu”>Menu</div>
		  <div id=“header”>Header</div>
		  <div id=“sidebar-a”>Sidebar A</div>
		  <div id=“content”>Content</div>
		  <div id=“footer”>Footer</div>
		  </div>
If you refresh you page, it should now look as the one in Figure 17.17. Notice that 
the divs are arranged one above another as is the normal document flow. Using CSS 
we are going to specify a different layout. We achieve this by going to our CSS style 
sheet, removing the background color from the main container and specifying new 
values for all our new divs separately.  
 

Figure 17.17: A CSS page with the five divs

NB: We deleted the text in the help-container div. We also opened the galaxy.css and 
specified a color for each new div we created in order to get what you see in Figure 
17.10.
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10.	 Now, edit rulestyles.css to look as below. We wish to float some of the <DIV> 
elements to the right or left depending on our design:

1.	 html, body {
2.	 margin:0;
3.	 padding:0;
4.	 }
5.	 #help-container {
6.	 width:760px;
7.	 margin=auto;
8.	 }
9.	 #menu {
10.	 background-color:orange;
11.	 height:50px
12.	 font-size:zem;
13.	 }
14.	 #header {
15.	 background-color:red;
16.	 height:200px
17.	 }
18.	 #sidebar-a {
19.	 float:right;
20.	 background-color:blue;
21.	 width:260px;
22.	 }
23.	 #content {
24.	 float:left;
25.	 background-color:green;
26.	 width:500px;
27.	 }
28.	 #footer {
29.	 background-color:orange;
30.	 width:760px;
31.	 }
Let us try to explain some of the code on the fly:
•	 Lines 6,21,26,31: they set the width of the div.
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•	 Lines 11,16: sets the height of the div. Where no height is specified, the div will 
expand with text.

•	 Line 19: tells the sidebar-a div to float to the right.
•	 Line 24: tells the content div to float to the left. 
Save the changes and refresh your page. Your page should now look like Figure 
17.18 below:
 

Figure 17.18: the CSS page with main divs as specified. Notice how Content floats on the 
left and Sidebar A on the right; and how they interleave with one another. Check the code 

that sets this again. 
11.	 This layout looks okay for now as long as you have not added text. Upon adding 

some text, some misalignments will start to be seen. For example, let us add the 
following text in the content area:

	 <div id=“content”>

How to Help Challenged Citizens
•	 Let all people respect the visually challenged, deaf and dumb without 

discrimination.
•	 For citizens that don’t have limbs, support them physically when required and 

financially to help them purchase prosthetics.
•	 The education system should provide special books written in Braille to support 

the visually challenged.
</div>
Notice what happens to the page layout now as captured in Figure 17.19.
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Figure 17.19: Content area with text causes layout problems
Notice that the text in the content area does not push the footer down with it as we 
expect. This is because any floated element in CSS cannot push the elements below 
it. We need to introduce the “clear” property in the footer which will make sure that 
it is pushed down as the elements above it expand. This is how you will do it: open 
your css style sheet then make sure that the code under footer looks as follows:
	 #footer {
			   clear:both;
			   background-color:orange;
			   width:760px;
			   }
The clear property will have the effect on the footer as captured in Figure 17.20. 
refresh your page to see this: 
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Figure 17.20: Footer pushed down with text.
12.	 In some browsers, the boundary between the Content and the Sidebar A may not 

be as clearly defined as is shown in Figure 17.7. Instead, the text of the content 
may flow into the white space under the blue Sidebar A. If this happens, then 
you may need a different means of specifying the extent of the right margin of 
the Content relative to the right margin of the container.

You will need to use the “margin-right” property i.e.
	 #content {
			   margin-right:260px;
			   background-color:green;
			   }
In so doing, you are telling the browser that the right margin of the content div is set 
at 260px from the right margin of the main container (galaxy-container). Hence, the 
container region cannot overlap with the sidebar that has been floated to the right.
You can now use the text formatting commands to format the text in each div. We 
need to do the following:

(a)	 To add a menu to the menu div. 
(b)	 To add a title in the Header div.
(c)	 To add copyright information in the footer.
13.	 Add the following in the header section:
	 <div id=“header”>
	 <h2>Let Us Learn Sign Language </h2>
	 </div>
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Refresh your page to see the new header as shown in Figure 17.21. 
 

Figure 17.21: New header
Notice the space between the menu and the header. This is caused by the default 
padding and margins. Open your style sheet file and strip these default values: 
	 h2 {
		  margin:0;
		  padding:0;
		  }
If you do it correctly the white space will disappear.
14.	  To add a menu we use the unnumbered list. Edit the text in the menu div section 

as follows:
1.	 <div id=”menu”>
2.	 <ul>
3.	 <li><a  href=“#”>Home</a></li>
4.	 <li><a href=“#”>About</a></li>
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5.	 <li><a href=“#”>Our Services</a></li>
6.	 <li><a href=“#”>Contacts</a></li>
7.	 </ul>
</div>Line 2: the <ul> stands for unnumbered list. In this instance, it acts as a 
container for the menu items.
Line 3-6: the <li> stands for list values. Each li creates a unique identifier for the menu 
items. Each menu item should ideally be linked to a page (hence the href property).
If you refresh your page now, yo will see your menu having bullets one item after 
the next. We don’t want a bulleted list. We want a horizontal menu. We therefore 
move to step 15 below.
15.	 Open the CSS style sheet and edit #menu to become menu ul and menu li:
1.	 #menu ul {
2.	 list-style:none;
3.	 margin:0;
4.	 padding:0;
5.	 height:35px
6.	 }
7.	 #menu li {
8.	 float:left;
9.	 margin:0 1.00em;
10.	 }

Explanations:
Line 1: points to the unnumbered list menu (ul).
Line 2: specifies that the list has no numbering style.
Line 7: points to the menu list items.
Line 8: floats the menu list items to the left and arranges them horizontally one after 
the next.
Line 9: specifies the spaces between menu items.
Save your work and refresh your page. It should now look like Figure 17.22 below:
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Fig. 17.22: The menu or navigation pane is ready
16.	 Let us now format the text on our page. Let us start by creating a heading for 

our content. The heading is “How to Help Challenged Citizens”. We want to 
format it with the <h2> tag:

<div id=“content”>

<p><h2>How To Help Challenged Citizens</p></h2>
-	 Let all the people respect the visually challenged, deaf and dumb citizens.
-	 For citizens that don’t have limbs, support them physically when required and 

financially to help them purchase prosthetic limbs.
- 	 The education system should provide special books written in Braille to support 

the visually challenged.
</div>
Do not forget to add the following in the style sheet file:
	 h3 {
		  margin:0;
		  padding:0;
		  }
	 p {
		  margin:0;
		  padding:0;
		  } 
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17.	 Let us display the image of a sign languahe in the sidebar.
Download a .jpg image of one of sign language and save it in the Pictures folder as 
galaxy.jpg. To display this in the sidebar div add edit the code in the sidebar-a section 
of the style sheet:

#sidebar-a {
float:right;
background-image:url(../Pictures/signlanguage.jpeg); 
width:260px;
height:237px;
}

Carefully specify the dimensions of the image to fit the sidebar space. When you 
refresh your page, you now have the following as shown in Figure 17.23. Notice we 
have deleted some of te text in the content area. Also, notice the image causes the 
sidebar to flow downwards so that it can fit according to the specifications that you 
gave in the CSS file.

Figure 17.23: An image inserted in the sidebar 
NB: Check for the code of this Activity in the code section below.

Code for HTML Page index.html
<html>

<head>

<meta http-equiv=”Content-type” content=”text/html; 
charset=UTF-8”/>

<title> We Care for Special People </title>
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<link rel=”stylesheet” type=”text/css” href=”rulestyles.css”/>

<style type=”text/css” media=”all”>@import “rulestyles.css”;</
style>

</head>

<body>

<div id=”help-container”>

<div id=”menu”>

	 <ul>

	 <li><a  href=“#”>Home</a></li>

	 <li><a href=“#”>About</a></li>

	 <li><a href=“#”>Our Services</a></li>

	 <li><a href=“#”>Contacts</a></li>

	 </ul>

</div>

<div id=”header”><h2>Let Us Learn Sign Language </h2></div>

<div id=”sidebar-a”><p> </div>

<div id=”content”>

	 <h1>How to Help Challenged Citizens</hi>

<p>&bullet;&nbsp;Let all people respect the visually challenged, 
deaf and &nbsp;&nbsp;dumb without discrimination.</p>

<p>&bullet;&nbsp;The education system should provide special 
books &nbsp;&nbsp;written in Braille to support the visually 
challenged.</p>

</div>

<div id=”footer”>Footer</div>

</div>

</body>

</html>
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Code for CSS Stylesheet rulestyles.css

html, body {

	 margin:0;

	 padding:0;

	 }

 h2	 {

	 margin:0;

	 padding:0;

	 }

 #help-container {

	 width:760px;

	 margin=auto;

	 color:white;

	 }

  #menu {

	 background-color:orange;

	 height:35px;

	 font-size:24px;

	 float:left;

	 width:760px;

	 }

  #menu ul {

	 list-style:none;

	 margin:0;
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	 padding:0;

	 height:35px

	 }

  #menu li {

	 float:left;

	 margin: 0 1.00em;

	 }

  #header {

	 background-color:red;

	 height:50px;

	 font-size:24px;

	 clear:both;

	 }

  #sidebar-a {

	 float:right;

	 background-color:blue;

	 background-image:url(signlanguage.jpg); 

	 width:260px;

	 height:337px;

	 }

  #content {

	 float:left;

	 background-color:green;
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	 width:500px;

	 font-size: 14px;

	 }

  #footer {

	 clear:both;

	 background-color:orange;

	 width:760px;

	 font-size:24px;

	 }

Activity 17.15: CSS assignment
Create a CSS web page for your school. Let it have a layout like the one in Activity 
17.6 but you can choose to have a different layout if you so wish.

Assessment Exercise 17.1
Fill in the blanks in the following statements:
(a)	 Using the ___________ element allows authors to use external style sheets in 

their pages.
(b)	 To apply a CSS rule to more than one element at a time, separate the element 

names with a(n)_________.
(c)	 Pixels are a(n)__________length measurement unit.
(d)	 The __________pseudo class is activated when the user moves the mouse cursor 

over the specified element.
(e)	 Setting the overflow property to_______ provides a mechanism for containing 

inner content without compromising specified box dimensions.
(f)	 While ___________ is a generic in-line element that applies no inherent 

formatting and ____________is a generic block-level element that applies no 
inherent formatting.

(g)	 Setting property background-repeat to ____________tiles the specified 
background image vertically.

384

Cascading Style Sheet



(h)	 If you float an element, you can stop the flowing of text by using property________.
(i)	 The   property allows you to indent the first line of text in an element.
(j)	 Three _______ components of the box model are the________, ________ 

and_______.

Unit Test 17
1.  	 Write a CSS rule that makes all text in a div to be of font color green.
2.	 Write a CSS rule that places a background image in a div.
3. 	 Write a CSS rule that gives all h1 and h2 elements a padding of 0.5 ems, and a 

margin of 0.5 ems.
4. 	 Create a CSS web page displaying the flag of Rwanda floating to the left. Write 

the National anthem of Rwanda and float it to the right of the flag. 
5. 	 Using HTML and CSS create a static website for your school that has the 

following features:
    	 (a) 	The school logo at the top center of the page.
    	 (b) The school motto just below the logo, also centered on the page.
    	 (c) 	A menu bar with the following commands: Home, About, Subjects, Clubs, 	

	 Games Teams.
    	 (d) Create three sections one on top of the other below the menu. 			 

	 In the first section, display a picture of your school.
    	 (e) 	In the second section, describe the location of your school and give 		

	 directions on how a visitor can trace their way to the school.
    	 (f) 	In the lowest section, give the contact information for the school e.g. 		

	 Telephone, address etc.
   	 (g) At the bottom of the page, include the copyright information.

NB: Specify the font styles, color and background color as you wish. However 
make sure that your colors give an attractive interface. A good method 
of selecting colors is to use the color scheme of your school if it exists. 

385

Cascading Style Sheet



386

Glossary
Algorithm: A logical step-by-step procedure for solving a problem in terms of 

instructions to be executed, and the order in which the instructions are to be 
executed.

Arithmetic and Logic Unit (ALU): A part of the central processing unit that performs 
computations and makes comparisons as instructed.

Array: An array is a group of contiguous memory locations having identified by the 
same name for storing data the same type.

Artificial intelligence (AI): A field of computer technology in which researchers 
and electronic product developers concentrate on developing computers that 
mimic human intelligence.

Assignment: In programming context, assignment is an operation that causes operand 
on the left side of the assignment operator to have its value changed to the value 
on the right.

BIOS: This is an abbreviation for Basic Input Output System, a read-only firmware 
that contains the basic instruction set for booting the computer: 

Bit:  Bit is a short form of binary digits referring to a single digit 0 or 1 used to 
represent any data in digital computers.

Boolean data type: Data type used to represent two values: true (1) or false (0).
Boolean logic: A form of algebra in which all values are reduced to either true or false 
Boot Order:  Sequence in which a computer should check available storage devices 

for the operating system’s boot files.
Byte: A group of bits used to store a single character. A byte usually consists of seven 

or eight bits, which the computer handles as a unit.
Cascading style sheet: Styles that define how HTML elements and markup should 

be displayed by the browser.
Computer hardware: The physical computer equipment one can see and touch. 

Such equipment includes; the system unit, input devices, storage devices and 
output devices.

Computer program: A set of instructions that directs the computer on the tasks to 
perform and how to perform them. These instructions are specially written using 
computer programming languages.

Computer system: A computer system refers not only to the physically attached 
devices to the computer, but also to software and the user. 

Conditional logic: This is a Boolean statement formed by combining two statements 
or facts using conditional rules.

Control structure: Refers to a statement or block of code that determines the flow 
or order in which other program statements are executed.
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Control unit: The part of the CPU that interprets instructions and controls all 
the operations in a computer system. The control unit monitors on the input, 
storage, the arithmetic and logic operations, and the output operations to have 
the instructions carried out. 

Declaration: In programming context, declaration refers to reserving memory 
location by specifying the type of data to be stored.

Device Driver: utility program that acts as an interface between a hardware device 
and the operating system.

Disk formatting: refers the process of preparing a new disk for use by imprinting 
sectors and tracks on the surface of the disk so that the operating system can 
recognise and make it accessible.

Drive: Devices used to read and/or write (store) data on a storage media.
Electronic mail (e-mail): A type of mail system that uses computers and 

telecommunication facilities to transmit messages. 
Electrostatic discharge (ESD): Refers to flow of static electricity when two 

triboelectric objects come into contact.
Ergonomics: Refers to applied science of equipment design intended to optimize 

productivity by minimizing discomfort and fatigue.
Ethics: Refers to a set of moral principles that govern behaviour of an individual 

or group.
Expression: Refers to a sequence of operators and operands that specifies relational 

or mathematical computation.
Flowchart: Program design tool represent an algorithm graphically using a set of 

standard symbols.
Function prototypes:  This is a statement in C or C++ programming used to  declare 

a function without implementing its body.
Goto: This is a form of jump statement used to transfer control to lines of code 

identified using labels.
Hard copy: Hard copy refers to the tangible output produced mostly on a piece of 

paper by devices such as printers and plotters.
Hard disk: Also referred to as a hard drive or a winchester disk, is a sealed unit in 

which are shiny, metallic disk platters and read/write heads that read and record 
data on the disks.

HMDI: This is an abbreviation for High Definition Multimedia Interface, an interface 
used for transferring compressed and uncompressed digital audio or video data: 

Hypertext Markup Language (HTML): This a standard web development language 
used for describing the structure of a web document.

Infinite loop: This is an endless loop that may be caused by boolean condition that 
is never returns false.
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Input/output (I/O) devices: Devices used  for entering data to be processed and for 
reporting the results of processing.

Input: A collection of raw data at the start of information processing cycle.
Integrated circuits: Thousands of small circuits etched on a silicon chip. As these 

circuits are made more and more compact, they are called Large Scale Integrated 
(LSI) and  Very Large Scale Integrated (VLSI) circuits.

Interpreter: A language processor that translates the source program statement-
by-statement allowing the CPU to execute one line before translating the next.

Logic gate: These are the basic building blocks of electronic circuits having one or 
more inputs but returning only one output in digital systems. 

Logic Programming: Rule-based nonprocedural programming paradigm that focuses 
on use of symbolic logic or predicate calculus.

Looping: In programming context, looping refers to repeated execution of a block 
of statements until a boolean condition returns false.

Microcomputer: The name computer with a microprocessor as its brain. A 
microcomputer can perform input, processing, storage and retrieval, and output 
operations rapidly, accurately, automatically, and economically despite its 
relatively small physical size. 

Microprocessor: A complete central processing unit of a computer built silicon chip.
Minicomputer: A computer having a smaller capacity for both primary and secondary 

storage than medium size and large size mainframe computers.
Modular Programming: Programming approach in which complex program 

is broken down into smaller components known as modules, procedures or 
functions.

Networks: Communication systems that connect computers, terminals, and other 
electronic office equipment for the purpose of efficient communication and 
sharing of resources.

Nibble: This is a sequence of four bits Half a byte, which is usually a grouping of 
4 bits is called a nibble.

Object-oriented Programming (OOP): Programming paradigm in which 
programming procedures (methods) are combined with data (state) to form 
objects that are organized into classes.

Ones complement: Refers to bit-by-bit negation of a binary number. It is usually 
considered as a step to finding negative binary number of decimal numbers. 

Operating system: This is a complex program that is responsible for controlling 
processing operations in a computer system, Examples of common Operating 
Systems are: Microsoft Windows, UNIX, Linux and Mac OS.

Output: Useful information available at the end of the information processing cycle.
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Parameter passing: Refers to exchange of data between two functions. In other words 
parameter passing serves as hence serving as the communication mechanism 
between two functions.

Peripheral devices: Refers to devices that are connected to the system unit called 
through ports.

Programming Paradigm: Refers to pattern, theory or systems of ideas that used to 
guide development of computer programs.

Pseudocode: Refers to structured statements used to express an algorithm input, 
processing and output logic of a program.

Random-Access Memory (RAM): A type of main memory that holds data and 
information temporarily before and after processing. 

Read-Only Memory (ROM): This is a type of main memory that stores data or 
instructions permanently or semi permanently. 

Repetitive Strain Injuries (RSI): This is a health related problem characterized by 
eye strain, headache and dizziness caused by prolonged use of computers.

Reserved words: These are keywords that have a special meaning in a language and 
can only be used for the intended purpose.

Robotics: Study of robots controlled by computer to perform tasks ordinarily done 
by human beings.

Semiconductor: Materials that are neither bad conductors nor good conductors 
such as silicon on which integrated and support circuits are etched. It is used 
for developing microprocessors, solid state memory, RAM and other electronic 
components.

Source code: Refers to a set of instructions or statements written by a programmer 
that are not yet translated into machine-readable form. 

Supercomputer: The largest, fastest, and most expensive type of computer. 
A supercomputer can perform hundreds of millions of complex scientific 
calculations in a second.

System unit: This is the main part of most desktop computers within which are 
components like the processor, hard disk drive and main memory

Utility program: A collection of instructions designed to make common processing 
operations run smoothly. 

Variable: In programming context,  a variable correspond to location in memory in 
which a value required by a program can be stored.

Web server: A program that runs on a computer and is responsible for replying to 
web browser requests for resources such as web pages.

World Wide Web: Refers to hypertext interactive, cross-platform, and graphical 
information repository known as website that runs over the Internet.


